更多“填空题方程y‴=x+ex的通解为____。”相关问题
  • 第1题:

    方程y'=f(x)y的通解是:


    答案:D
    解析:
    提示 方程y'=f(x)y为一阶可分离变量方程。

  • 第2题:

    方程y"=e2x-cosx的通解为( )。



    答案:D
    解析:
    对方程积分两次,得

  • 第3题:

    微分方程y''=y'2的通解是( )(C1、C2为任意常数)。


    答案:D
    解析:
    提示:这是不显含y可降阶微分方程,令p=y',则dp/dx=y'',用分离变量法求解得,-y'=1/(x+C1) ,两边积分,可得y=C2-ln x+C1 ,故应选D,也可采用检验的方式。

  • 第4题:

    微分方程y'=x的通解为()


    答案:C
    解析:

  • 第5题:

    微分方程y''+y=0的通解是 .


    答案:
    解析:
    【考情点拨】本题考查了二阶线性微分方程的通解知识点.【应试指导】微分方程y''+y=0的特征方程是r2+1=0.

  • 第6题:

    微分方程y′-2xy=0的通解为y=_____.


    答案:
    解析:
    所给方程为可分离变量方程.

  • 第7题:

    填空题
    微分方程y″+[2/(1-y)](y′)2=0的通解为____。

    正确答案: y=1-1/(c1x+c2)
    解析:
    原微分方程为y″+[2/(1-y)](y′)2=0,令y′=p,则y″=pdp/dy,原方程变形为pdp/dy+2p2/(1-y)=0,即p[dp/dy+2p/(1-y)]=0。如果p=0,则y=c,这不是此方程的通解。如果p≠0,则有dp/dy=2p/(y-1),分离变量并积分得ln|p|=2ln|y-1|+ln|c|,p=c1(y-1)2 即 dy/dx=c1(y-1)2故∫dy/(y-1)2=∫c1dx⇒-1/(y-1)=c1x+c2⇒y=1-1/(c1x+c2)。

  • 第8题:

    填空题
    微分方程xy″+3y′=0的通解为____。

    正确答案: y=-c1/(2x2)+c2
    解析:
    原微分方程为xy″+3y′=0,令y′=p,则y″=p′,则原方程变形为xp′=-3p,即dp/dx=-3p/x,分离变量并两边积分得∫(dp/p)=-∫(3/x)dx,ln|p|=-3ln|x|+ln|c|,p=c1x3,即y′=c1/x3。故y=-c1/(2x2)+c2,此即为原微分方程的通解。

  • 第9题:

    填空题
    已知y1=x为微分方程x2y″-2xy′+2y=0之一解,则此方程的通解为____。

    正确答案: y=c1x+c2x2
    解析:
    设与y2是与y1线性无关的一个特解,则y2′=u+xu′,y2″=2u′+xu″,其代入x2y″-2xy′+2y=0中,得2x2u′+x3u″-2xu-2x2u′+2xu=0,即x3u″=0。u″=0,得u=x,即y2=x2。故原方程的通解为y=c1x+c2x2

  • 第10题:

    填空题
    微分方程x2y″+3xy′-3y=x3的通解为____。

    正确答案: y=c1/x3+c2x+x3/12
    解析:
    原微分方程为x2y″+3xy′-3y=x3,其欧拉方程形式为D(D-1)y+3Dy-3y=e3t,即D2y+2Dy-3y=e3t,即d2y/dt2+2dy/dt-3y=e3t 。解得其通解为y=c1e3t+c2et+e3t/12,即y=c1/x3+c2x+x3/12。

  • 第11题:

    填空题
    方程y‴=x+ex的通解为____。

    正确答案: y=ex+x4/24+C1x2+C2x+C3
    解析:
    原方程为y‴=x+ex,方程两边对x积分得y″=ex+x2/2+C,以上方程两边再次对x积分得y′=ex+x3/6+Cx+C2,故原方程的通解为y=ex+x4/24+C1x2+C2x+C3(C1=C/2)。

  • 第12题:

    填空题
    方程xdy/dx=yln(y/x)的通解为____。

    正确答案: ln(y/x)=Cx+1
    解析:
    原微分方程为xdy/dx=yln(y/x),即dy/dx=(y/x)ln(y/x)。令y/x=u,则dy/dx=u+xdu/dx,即xdu/dx=u(lnu-1),分离变量并两边分别积分得ln|lnu-1|=ln|x|+lnC1,即方程的通解为lnu=Cx+1,ln(y/x)=Cx+1。

  • 第13题:

    微分方程xy'-ylny=0的通解为( )。

    A、y=cex
    B、y=clnx
    C、y=lncx
    D、y=ecx

    答案:D
    解析:
    方程是可分离变量的方程,可化为,两边积分得lnlny=lnx+lnc,即其通为y=ecx

  • 第14题:

    微分方程y′+y=0的通解为( ).《》( )


    答案:D
    解析:

  • 第15题:

    微分方程y'+x=0的通解为


    答案:D
    解析:
    [解析]所给方程为可分离变量方程.

  • 第16题:

    微分方程y′′+6y′+13y=0的通解为.


    答案:
    解析:
    【答案】
    【考情点拨】本题考查了二阶线性齐次微分方程的通解的知识点.
    【应试指导】微分方程y''+6y'+13y=0的特征方程

  • 第17题:

    微分方程y'=1的通解为()

    A.y=x
    B.y=Cx
    C.y=C-x
    D.y=C+x

    答案:D
    解析:

  • 第18题:

    微分方程y'+y=0的通解为y=[]

    A.e-x+C
    B.-e-x+C
    C.Ce-x
    D.Cex

    答案:C
    解析:
    所给方程为可分离变量方程.

  • 第19题:

    填空题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=____。

    正确答案: -xex+x+2
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第20题:

    填空题
    方程dy/dx+y=y2的通解为____。

    正确答案: y=1/(Cex+1)
    解析:
    原方程为dy/dx+y=y2,令1/y=u,则-(1/y2)dy/dx-1/y=-1,即du/dx-u=-1,故u=edx[-∫edxdx+C]=ex(ex+C)=Cex+1。故方程的通解为y=1/(Cex+1)。

  • 第21题:

    填空题
    微分方程y′=y(1-x)/x的通解是____。

    正确答案: y=Cxe-x
    解析:
    原微分方程y′=y(1-x)/x。分离变量得dy/y=(1/x-1)dx。两边分别积分得ln|y|=ln|x|-x+lnC1,即y=Cxex

  • 第22题:

    填空题
    方程y′=(sinlnx+coslnx+a)y的通解为____。

    正确答案: ln,y,=xsin(lnx)+ax+C
    解析:
    原方程为y′=(sinlnx+coslnx+a)y,分离变量并积分得lny=ax+∫(sinlnx+coslnx)dx=∫xcoslnxdlnx+∫sinlnxdx=∫xd(sinlnx)+∫sinlnxdx=xsinlnx+C。故原方程的通解为ln|y|=xsinlnx+ax+C。

  • 第23题:

    填空题
    欧拉方程x2d2y/dx2+4xdy/dx+2y=0(x>0)的通解为____。

    正确答案: c1/x+c2/x2(其中c1,c2为任意常数)
    解析:
    原方程为x2d2y/dx2+4xdy/dx+2y=0。令x=et,则原方程可化为D(D-1)y+4Dy+2y=0,即d2y/dt2+3dy/dt+2y=0。其相应的特征方程为r2+3r+2=(r+1)(r+2)=0,解得r1=-1,r2=-2。故变形后的方程得通解为Y=c1et+c2e2t,则原方程的通解为Y=c1/x+c2/x2其中c1,c2为任意常数。

  • 第24题:

    填空题
    曲线y=x+ex在x=0处的切线方程是____.

    正确答案: 2x-y+1=0
    解析:
    因为y′=1+ex,故y′|x=0=1+e0=2.
    当x=0时,y=1,所以切线方程为y-1=2(x-0).
    即2x-y+1=0.