填空题设f(x)=ex,f[g(x)]=1-x2,则g(x)=____。

题目
填空题
设f(x)=ex,f[g(x)]=1-x2,则g(x)=____。

相似考题
更多“填空题设f(x)=ex,f[g(x)]=1-x2,则g(x)=____。”相关问题
  • 第1题:

    设函数f(x)为奇函数,g(x)为偶函数,则复合函数()是奇函数。

    A.f(f(x))

    B.g(f(x))

    C.f(g(x))

    D.g(g(x))


    正确答案:A

  • 第2题:

    设f(x),g(x)ϵP[x J. 若f(x)lg(x),g(x)lf(x),则 f(x)与g(x)的关系是( ).


    参考答案:A

  • 第3题:

    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。

    A. f[g(x)]
    B. f[f(x)]
    C. g[f(x)]
    D. g[g(x)]

    答案:D
    解析:
    D项,令T(x)=g[g(x)]。因为T(-x)=g[g(-x)]=g[-g(x)]=-g[g(x)],所以T(-x)=-T(x),所以g[g(x)]为奇函数。

  • 第4题:

    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。

    A. [f(x)/g(x)]>[f(a)/g(b)]
    B. [f(x)/g(x)]>[f(b)/g(b)]
    C. f(x)g(x)>f(a)g(a)
    D. f(x)g(x)>f(b)g(b)

    答案:C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

  • 第5题:

    设f(x),g(x)∈F[x],若f(x)=0则有什么成立?()

    • A、deg(f(x)g(x))
    • B、deg(f(x)g(x))>max{degf(x),degg(x)}
    • C、deg(f(x)+g(x))>max{degf(x),degg(x)}
    • D、deg(f(x)+g(x))=max{degf(x),degg(x)}

    正确答案:D

  • 第6题:

    设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。

    • A、F(x)+C也是f(x)的原函数,C为任意常数
    • B、F(x)=G(x)+C,C为任意常数
    • C、F(x)=G(x)+C,C为某个常数
    • D、F’(x)=G’(x)

    正确答案:B

  • 第7题:

    设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()

    • A、f(x)=g(f(x))
    • B、g(x)=f(f(x))
    • C、f(x)=g(x)
    • D、g(x)=f(g(x))

    正确答案:C

  • 第8题:

    单选题
    设f(x)=ex,f[g(x)]=1-x2,则g(x)=(  )。
    A

    ln(1+x2

    B

    ex

    C

    -ln(1-x2

    D

    ln(1-x2


    正确答案: B
    解析:
    根据f[g(x)]=eg(x=1-x2,可得g(x)=ln(1-x2)。

  • 第9题:

    填空题
    设z=f(xy,x/y)+g(y/x),其中f、g均可微,则∂z/∂x=____。

    正确答案: yf1′+f2′/y-yg′/x2
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,g′为函数g对x的导数。则∂z/∂x=∂f(xy,x/y)/∂x+∂g(y/x)/∂x=f1′y+f2′·(1/y)+g′·(-y/x2)=f1′y+f2′/y-yg′/x2

  • 第10题:

    单选题
    设f(x)=sinx,f[φ(x)]=1-x2,则φ(x)=(  )。
    A

    arcsin(1-x)

    B

    arcsin(1+x)

    C

    arcsin(1-x2

    D

    arcsin(1+x2


    正确答案: C
    解析:
    因sin(arcsinx)=x,又知f(x)=sinx,f[φ(x)]=1-x2,故φ(x)=arcsin(1-x2)。

  • 第11题:

    问答题
    设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

    正确答案:
    f(x)g(x)=1,则f′(x)g(x)+f(x)g′(x)=0①
    即f′(x)/f(x)=-g′(x)/g(x)②
    对①两边求导得f″(x)g(x)+2f′(x)g′(x)+f(x)g″(x)=0,即f″(x)+2f′(x)g′(x)/g(x)+f(x)g″(x)/g(x)=0,即f″(x)/f′(x)+2f′(x)g′(x)/f′(x)g(x)+f(x)g″(x)/f′(x)g(x)=0。
    由①得f″(x)/f′(x)+2g′(x)/g(x)-f(x)g″(x)/f(x)g′(x)=0,则f″(x)/f′(x)+2g′(x)/g(x)=g″(x)/g′(x)。
    又由②得f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
    解析: 暂无解析

  • 第12题:

    填空题
    设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()

    正确答案: 1/2
    解析: 暂无解析

  • 第13题:

    设f(0)=g(0),且当x30时,f'(x)>g'(x),则当x>0时有()。

    A.f(x)

    B.f(x)>g(x)

    C.f(x)=g(x)

    D.以上都不对


    正确答案:B

  • 第14题:

    设f(x)的一个原函数为x3,则xf(1-x2)dx=(57)。

    A.(1-x2)3+C

    B.

    C.

    D.x3+C


    正确答案:B
    解析:f(x)的一个原函数为x3,所以∫f(x)dx=x3+C,于是∫xf(1-x2)dx=答案选B。

  • 第15题:

    f(x)与g(x)的图像如图所示,设u(x)=f[g(x)],则


    答案:
    解析:

  • 第16题:

    设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )

    A.f(x)g(b)>f(b)g(x)
    B.f(x)g(a)>f(a)g(x)
    C.f(x)g(x)>f(b)g(b)
    D.f(x)g(x)>f(a)g(a)

    答案:A
    解析:

  • 第17题:

    设F(x)是f(x)的一个原函数,则等于()。

    • A、F(e-x)+C
    • B、-F(e-x)+C
    • C、F(ex)+C
    • D、-F(ex)+C

    正确答案:B

  • 第18题:

    设f(x)=3x+2,g(x)=2x-3,则f(g(x))=6x-7。


    正确答案:正确

  • 第19题:

    判断题
    设f(x)=3x+2,g(x)=2x-3,则f(g(x))=6x-7。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第20题:

    单选题
    设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则(  )。
    A

    f(0)=1为f(x)的极小值

    B

    f(0)=1为f(x)的极大值

    C

    (0,f(0))为曲线y=f(x)的拐点

    D

    由g(x)才能确定f(x)的极值或拐点


    正确答案: B
    解析:
    由f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0,得f″(0)=0。f″(x)+f′(x)g(x)+f(x)x=ex-1两边对x求导有
    f‴(x)+f″(x)g(x)+f′(x)g′(x)+f′(x)x+f(x)=ex
    可得f‴(0)=0,①两边再次对x求导得f4(x)+f‴(x)g(x)+2f″(x)g′(x)+f′(x)g″(x)+f″(x)x+2f′(x)=ex,可得f4(0)=1>0,故f(0)=1为f(x)的极小值。故应选(A)。

  • 第21题:

    单选题
    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]
    A

    f(x)/g(x)>f(a)/g(b)

    B

    f(x)/g(x)>f(b)/g(b)

    C

    f(x)g(x)>f(a)g(a)

    D

    f(x)g(x)>f(b)g(b)


    正确答案: C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

  • 第22题:

    单选题
    若∫f(x)dx=F(x)+C,则∫xf(1-x2)dx=(  )。[2018年真题]
    A

    F(1-x2)+C

    B

    (-1/2)F(1-x2)+C

    C

    (1/2)F(1-x2)+C

    D

    (-1/2)F(x)+C


    正确答案: B
    解析:
    计算得∫xf(1-x2)dx=(-1/2)∫f(1-x2)d(1-x2)=(-1/2)F(1-x2)+C,这里C均表示常数。

  • 第23题:

    填空题
    设f(x)=ex,f[g(x)]=1-x2,则g(x)=____。

    正确答案: ln(1-x2)
    解析:
    根据f[g(x)]=eg(x=1-x2,可得g(x)=ln(1-x2)。

  • 第24题:

    单选题
    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是()。
    A

    f[g(x)]

    B

    f[f(x)]

    C

    g[f(x)]

    D

    g[g(x)]


    正确答案: D
    解析: