填空题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是____。

题目
填空题
已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是____。

相似考题
更多“已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1”相关问题
  • 第1题:

    设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.


    正确答案:
    b

  • 第2题:

    设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:
      (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)
      (2)若r(A)≥r(B),则AX=0的解都是BX=0的解
      (3)若AX=0与BX=0同解,则r(A)-r(B)
      (4)若r(A)=r(B),则AX=0与BX=0同解
      以上命题正确的是().

    A.(1)(2)
    B.(1)(3)
    C.(2)(4)
    D.(3)(4)

    答案:B
    解析:
    若方程组AX=0的解都是方程组BX=0的解,则n-r(A)≤n-r(B),从而  r(A)≥r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但
      反之不对,所以(3)是正确的,(4)是错误的,选(B).

  • 第3题:

    非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则

    A.r=m时,方程组A-6有解.
    B.r=n时,方程组Ax=b有唯一解.
    C.m=n时,方程组Ax=b有唯一解.
    D.r

    答案:A
    解析:
    因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,

  • 第4题:

    已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且η1,η2,η3是3个不同的解向量,则通解是( ).

    A.x=k1(η-η2)+η3
    B.x=k1η1+k2η2+η3
    C.x=k1η1+k2η2+k3η3
    D.x=k1(η+η2)+η3

    答案:A
    解析:
    由n=4,r=3得s=1。ηη2是 Ax=0的基础解系

  • 第5题:

    设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵


    答案:
    解析:

  • 第6题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第7题:

    已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.


    答案:
    解析:

  • 第8题:

    非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).

    A.r=m时,方程组AX=b有解
    B.r=n时,方程组AX=b有唯一解
    C.m=m时,方程组AX=b有唯一解
    D.r<n时,方程组AX=b有无穷多解

    答案:A
    解析:

  • 第9题:

    填空题
    已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是____。

    正确答案: k(0,1,-1,-1)T+(1,1,0,2)T/2
    解析:
    由Aα()1b(),Aα()2b(),故A[(α()1α()2)/2]=b(),则(α()1α()2)/2是方程组AX()b()的特解。又r(A)=3,故四元齐次方程组AX()b()的基础解系只含有一个解向量。由α()1α()3是AX()b()的解向量,知α()1α()3是齐次方程组AX()0()的解,而α()1α()3=(α()1α()2)-(α()2α()3)=(0,1,-1,-1)T,故AX()b()的通解为k(0,1,-1,-1)T+(1,1,0,2)T/2。

  • 第10题:

    问答题
    设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

    正确答案:
    设r(A)=r(B)=r,方程组AX=0的基础解系为①:ζ12,…,ζn-r,方程组BX=0的基础解系为②:η12,…,ηn-r.
    构造向量组③:ζ12,…,ζn-r12,…,ηn-r.
    由向量组①可由②线性表示,则向量组②和③等价,从而r(③)=n-r,所以ζ12,…,ζn-r是向量组③的极大线性无关组,有η12,…,ηn-r可由ζ12,…,ζn-r线性表示,即BX=0的任一解都可由ζ12,…,ζn-r线性表示,故BX=0的解都是AX=0的解,所以方程组AX=0与BX=0同解.
    解析: 暂无解析

  • 第11题:

    单选题
    设A为3阶方阵,α(→)1,α(→)2,α(→)3是互不相同的3维列向量,且都不是方程组Ax(→)=0(→)的解,若B=(α(→)1,α(→)2,α(→)3)满足r(AB)<r(A),r(AB)<r(B),则r(AB)等于(  )。
    A

    3

    B

    2

    C

    1

    D

    0


    正确答案: C
    解析:
    由于α()1α()2α()3不是Ax()0()的解,故AB≠0,所以r(AB)>0。
    又因r(AB)<r(A),故B不可逆,即r(B)≤2,从而r(AB)<r(B)≤2,即r(AB)=1。

  • 第12题:

    单选题
    已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。
    A

    k(0,1,-1,-1)T+(1,1,0,2)T

    B

    k(0,1,-1,-1)T+(1,1,0,2)T/2

    C

    k(1,1,0,2)T+(0,1,-1,-1)T

    D

    k(1,1,0,2)T+(0,1,-1,-1)T/2


    正确答案: D
    解析:
    由Aα()1b(),Aα()2b(),故A[(α()1α()2)/2]=b(),则(α()1α()2)/2是方程组AX()b()的特解。
    又r(A)=3,故四元齐次方程组AX()b()的基础解系只含有一个解向量。由α()1α()3是AX()b()的解向量,知α()1α()3是齐次方程组AX()0()的解,而α()1α()3=(α()1α()2)-(α()2α()3)=(0,1,-1,-1)T,故AX()b()的通解为k(0,1,-1,-1)T+(1,1,0,2)T/2。

  • 第13题:

    对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。

    A.2

    B.5

    C.3

    D.1


    正确答案:A

  • 第14题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解


    答案:错
    解析:

  • 第15题:

    设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

    A.不存在.
    B.仅含一个非零解向量.
    C.含有两个线性无关的解向量.
    D.含有三个线性无关的解向量.

    答案:B
    解析:

  • 第16题:

    为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用线性表示,并且r(A)=n-3,证明{图2为AX=0的一个基础解系.}


    答案:
    解析:

  • 第17题:

    取何值时,非齐次线性方程组 (1)有唯一解 (2)无解 (3)有无穷多个解? 并在无穷多个解时,求方程组的通解。


    答案:
    解析:

  • 第18题:

    设3阶矩阵A=[α1,α2,α3]有3个不同的特征值,且a3=a1+2a2.
      (Ⅰ)证明r(A)=2;
      (Ⅱ)若β=α1,α2,α3,求方程组Ax=β的通解.


    答案:
    解析:

  • 第19题:

    已知al,a2,a3,a4是四维非零列向量,记A=(a1,a2,a3,a4),A+是A的伴随矩阵,若齐次方程组AX=0的基础解系为(1,0,-2,0)T,则AX=0的基础解系为( )。

    A、al a2
    B、a1 a3
    C、al a2 a3
    D、a2 a3 a4

    答案:D
    解析:
    AX=0的基础解系只含有一个向量,所以矩阵A的秩为3,所以A存在不为0的3阶子 即a1-2a3=0,所以a1与a3线性相关。而方程组的基本解系必须是线性相关的向量,所以正确答案为D。

  • 第20题:

    问答题
    设η(→)1,η(→)2,η(→)3,η(→)4是五元非齐次线性方程组AX(→)=b(→)的四个解,且秩r(A)=3,又设:η(→)1+η(→)2+η(→)3+η(→)4=(4,-8,-12,12,16)T,η(→)1+2η(→)2+2η(→)3+η(→)4=(6,18,-18,-30,12)T,2η(→)1+2η(→)2+η(→)3+η(→)4=(18,-30,-36,30,36)T,求方程组AX(→)=b(→)的通解。

    正确答案:
    由系数矩阵A的秩r(A)=3,知五元线性方程组的基础解系应含两个解向量。
    由线性方程组解的性质知η()2-η()1,η()3-η()4,η()1-η()3,η()2-η()4都是其导出组的解,且它们的组合也是导出组的解,所以有
    ξ()1=(η()2-η()1)+(η()3-η()4)=2(η()1+2η()2+2η()3+η()4)-3(η()1+η()2+η()3+η()4)=(0,60,0,-96,-24)T
    ξ()2=(η()1-η()3)+(η()2-η()4)=2(2η()1+2η()2+η()3+η()4)-3(η()1+η()2+η()3+η()4)=(24,-36,-36,24,24)T
    ξ()1,ξ()2是导出组的两个线性无关的解向量。又有
    A[(η()1+η()2+η()3+η()4)/4]=(Aη()1+Aη()2+Aη()3+Aη()4)/4=(1/4)·4b()=b()所以η()*=(η()1+η()2+η()3+η()4)/4=(1,-2,-3,3,4)T是AX()=b()的特解。故AX()=b()的通解为η()=η()*+k1ξ()1+k2ξ()2,k1,k2为任意常数。
    解析: 暂无解析

  • 第21题:

    单选题
    设α(→)1,α(→)2,α(→)3,α(→)4是4维非零列向量组,A=(α(→)1,α(→)2,α(→)3,α(→)4),A*是A的伴随矩阵,已知方程组AX(→)=0(→)的基础解系为k(1,0,2,0)T,则方程组A*X(→)=0(→)的基础解系为(  )。
    A

    α()1α()2α()3

    B

    α()1α()2α()2α()3,3α()3

    C

    α()2α()3α()4

    D

    α()1α()2α()2α()3α()3α()4α()4α()1


    正确答案: A
    解析:
    由AX()0()的基础解系仅含有一个解向量,知r(A)=4-1=3,所以r(A*)=1,则A*X()0()的基础解系含三个解向量。
    又(α()1α()2α()3α()4)(1,0,2,0)T=0,即α()1+2α()3=0,知(α()1α()3)线性相关,所以方程组A*X()0()的基础解系为α()2α()3α()4

  • 第22题:

    单选题
    已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。
    A

    k(0,1,1,1)T+(1,1,0,2)T/2

    B

    k(0,1,-1,-1)T+(1,1,0,2)T/2

    C

    k(0,1,1,-1)T+(1,1,0,2)T/2

    D

    k(0,1,-1,1)T+(1,1,0,2)T/2


    正确答案: C
    解析:
    由Aα()1b(),Aα()2b(),故A[(α()1α()2)/2]=b(),则(α()1α()2)/2是方程组AX()b()的特解。又r(A)=3,故四元齐次方程组AX()b()的基础解系只含有一个解向量。由α()1α()3是AX()b()的解向量,知α()1α()3是齐次方程组AX()0()的解,而α()1α()3=(α()1α()2)-(α()2α()3)=(0,1,-1,-1)T,故AX()b()的通解为k(0,1,-1,-1)T+(1,1,0,2)T/2。

  • 第23题:

    单选题
    已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为(  )。[2014年真题]
    A

    x=k1(α1-α2)+k2(α1+α3)+α1

    B

    x=k1(α1-α3)+k2(α2+α3)+α1

    C

    x=k1(α2-α1)+k2(α2-α3)+α1

    D

    x=k1(α2-α3)+k2(α1+α2)+α1


    正确答案: D
    解析:
    n元非齐次线性方程组Ax=B的通解为Ax=0的通解加上Ax=B的一个特解。因为r(A)=n-2,Ax=0的解由两个线性无关的向量组成,所以α2-α1,α2-α3是Ax=0的两个线性无关解。所以Ax=B的通解为:x=k1(α2-α1)+k2(α2-α3)+α1

  • 第24题:

    单选题
    设n元齐次线性方程组AX(→)=0(→),秩(A)=n-3,且α(→)1,α(→)2,α(→)3为其3个线性无关的解,则(  )为其基础解系。
    A

    α()1α()2α()2α()3α()1α()3

    B

    α()1α()2α()2α()3α()3α()1

    C

    α()1α()2α()3α()3α()2α()1+2α()3

    D

    α()1α()2,2α()2-3α()3,3α()3-2α()1


    正确答案: C
    解析:
    B项,因(α()1α()2)+(α()2α()3)+(α()3α()1)=0(),故其线性相关,不能构成AX()0()的基础解系。同理由(α()1α()2α()3)+(α()3α()2)-(α()1+2α()3)=0(),2(α()1α()2)+(2α()2-3α()3)+(3α()3-2α()1)=0()知C、D项的向量组都线性相关。