单选题已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。A (lnx)2/4B (lnx)/2C (lnx)/4D (lnx)2/2

题目
单选题
已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。
A

(lnx)2/4

B

(lnx)/2

C

(lnx)/4

D

(lnx)2/2


相似考题
参考答案和解析
正确答案: B
解析:
采用换元积分法,ex=t,则x=lnt,f′(t)=(lnt)/t,即f′(x)=(lnx)/x,故f(x)=∫[(lnx)/x]dx=(lnx)2/2+C,又f(1)=0,得C=0,则f(x)=(lnx)2/2。
更多“已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。”相关问题
  • 第1题:

    数学运算

    已知f(x)=x2+ax+3,若f(2+x)=f(2-x),则f(2)=( )。

    A.0

    B.-1

    C.-2

    D.3


    正确答案:B
    [解析]本题答案为B。本题属于函数问题。由f(2+x)=f(2-x)知道函数f(x)的对称轴为x= 2,因此-(a/2)=2,a=-4。所以f(2)=22-2×4+3=-1。

  • 第2题:

    若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。

    A.f′(x)<0,f″(x)<0
    B.f′(x)<0,f″(x)>0
    C.f′(x)>0,f″(x)<0
    D.f′(x)>0,f″(x)>0

    答案:A
    解析:
    已知在给出的(0,+∞)内,f′(x)>0,f″(x)<0,故在(0,+∞)上f(x)单调递增,且图形是凸的,再根据已知条件f(-x)=f(x)可知f(x)是偶函数,利用图形的对称性可得出f(x)在(-∞,0)是单调递减且也是凸的。故应该选择A。

  • 第3题:

    且f(0)=0,则f(x)等于:


    答案:C
    解析:
    提示:计算等号右边式子,得到f'(x)表达式。计算不定积分。

  • 第4题:

    若f(u)可导,且y=f(ex),则dy=()

    A.f'(ex)dx
    B.f'(ex)exdx
    C.f(ex)exdx
    D.f'(ex)

    答案:B
    解析:
    【考情点拨】本题考查了复合函数的微分的知识点.【应试指导】因为y=f(ex),所以,y'=f'(ex)exdx.

  • 第5题:

    非负连续函数f(x)满足f(0)=0,f(1)=1.已知以曲线y=f(x)为曲边,以[0,x]为底的曲边梯形,其面积与f(x)的n+1次幂成正比,则f(x)的表达式为


    答案:
    解析:

  • 第6题:

    设f(x)函数在[0,+∞)上连续,且满足,则f(x)是:

    A. xe-x
    B. xe-x-ex-1
    C. ex-2
    D. (x-1)e-x

    答案:B
    解析:

  • 第7题:

    若f(x)为可导函数,且已知f(0) = 0,f'(0) = 2,则的值为()。
    A. 0 B. 1 C. 2 D.不存在


    答案:B
    解析:
    提示:利用积分上限函数求导和洛必达法则。

  • 第8题:

    设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。


    正确答案:正确

  • 第9题:

    单选题
    已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。
    A

    (lnx)2/4

    B

    (lnx)/2

    C

    (lnx)/4

    D

    (lnx)2/2


    正确答案: B
    解析:
    采用换元积分法,ex=t,则x=lnt,f′(t)=(lnt)/t,即f′(x)=(lnx)/x,故f(x)=∫[(lnx)/x]dx=(lnx)2/2+C,又f(1)=0,得C=0,则f(x)=(lnx)2/2。

  • 第10题:

    填空题
    已知f′(ex)=xe-x,且f(1)=0,则f(x)=____。

    正确答案: (lnx)2/2
    解析:
    采用换元积分法,ex=t,则x=lnt,f′(t)=(lnt)/t,即f′(x)=(lnx)/x,故f(x)=∫[(lnx)/x]dx=(lnx)2/2+C,又f(1)=0,得C=0,则f(x)=(lnx)2/2。

  • 第11题:

    判断题
    设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第12题:

    单选题
    设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?
    A

    f″(x)+f′(x)=0

    B

    f″(x)-f′(x)=0

    C

    f″(x)+f(x)=0

    D

    f″(x)-f(x)=0


    正确答案: C
    解析: 对已知式子两边求导。已知f′(x)=f(1-x),求导f″(x)=-f′(1-x),f(x)+f′(1-x)=0,将1-x代入式子f′(x)=f(1-x),得f′/(1-x)=f[1-(1-x)]=f(x),即f″(x)+f(x)=0

  • 第13题:

    设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )

    A.f(a)=0且f′(a)=0
    B.f(a)=0且f′(a)≠0
    C.f(a)>0且f′(a)>
    D.f(a)<0且f′(a)<

    答案:B
    解析:

  • 第14题:

    已知f(x)在(-∞,+∞)上是偶函数,若f‘(-x0)=-k≠0,则f‘(x0)等于:
    A.-K
    B.K
    C. -1/K
    D.1/K


    答案:B
    解析:
    提示:利用结论“偶函数的导函数为奇函数”计算。
    f(-x) =f(x),求导-f'(-x)=f'(x),即f'(-x)=-f(x)。将x=x0代入,得f’(-x0) =-f‘(x0),解出f‘(x0)=K。

  • 第15题:

    设f(x)函数在[0,+∞)上连续,则f(x)是:
    A. xe-x
    B.xe-x-ex-1
    C. ex-2
    D. (x-1)e-x


    答案:B
    解析:
    提示:于是原题化为f(x)=xe-x+Aex......①

    分别计算出定积分值:

  • 第16题:

    设函数f(x)可导,且f(x)f'(x)>0,则



    A.Af(1)>f(-1)
    B.f(1)C.|f(1)|>|f(-1)|
    D.|f(1)|<|f|(-1)|

    答案:C
    解析:

  • 第17题:

    已知函数f(x)=f(x+4),f(0)=0,且在(—2,2)上有f'(x)=|x|,则f(19)=



    答案:C
    解析:
    由f(x)=f(x+4),知f(x)是周期为4的周期函数,故f(19)=f(-1),

  • 第18题:

    设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。


    答案:
    解析:

  • 第19题:

    设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?

    • A、f″(x)+f′(x)=0
    • B、f″(x)-f′(x)=0
    • C、f″(x)+f(x)=0
    • D、f″(x)-f(x)=0

    正确答案:C

  • 第20题:

    已知f’(x)=tanx2,且f(0)=1,则f(x)等于().

    • A、tanx+x+1
    • B、tanx-x+1
    • C、-tanx-x+1
    • D、-tanx+x+1

    正确答案:B

  • 第21题:

    单选题
    设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则(  )。
    A

    f(0)=1为f(x)的极小值

    B

    f(0)=1为f(x)的极大值

    C

    (0,f(0))为曲线y=f(x)的拐点

    D

    由g(x)才能确定f(x)的极值或拐点


    正确答案: B
    解析:
    由f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0,得f″(0)=0。f″(x)+f′(x)g(x)+f(x)x=ex-1两边对x求导有
    f‴(x)+f″(x)g(x)+f′(x)g′(x)+f′(x)x+f(x)=ex
    可得f‴(0)=0,①两边再次对x求导得f4(x)+f‴(x)g(x)+2f″(x)g′(x)+f′(x)g″(x)+f″(x)x+2f′(x)=ex,可得f4(0)=1>0,故f(0)=1为f(x)的极小值。故应选(A)。

  • 第22题:

    单选题
    已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。
    A

    (lnx)/2

    B

    (lnx)2/2

    C

    (lnx)2

    D

    lnx


    正确答案: B
    解析:
    采用换元积分法,ex=t,则x=lnt,f′(t)=(lnt)/t,即f′(x)=(lnx)/x,故f(x)=∫[(lnx)/x]dx=(lnx)2/2+C,又f(1)=0,得C=0,则f(x)=(lnx)2/2。

  • 第23题:

    单选题
    已知f’(x)=tanx2,且f(0)=1,则f(x)等于().
    A

    tanx+x+1

    B

    tanx-x+1

    C

    -tanx-x+1

    D

    -tanx+x+1


    正确答案: B
    解析: 暂无解析

  • 第24题:

    单选题
    已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。
    A

    lnx

    B

    lnx/2

    C

    (lnx)2

    D

    (lnx)2/2


    正确答案: D
    解析:
    采用换元积分法,ex=t,则x=lnt,f′(t)=(lnt)/t,即f′(x)=(lnx)/x,故f(x)=∫[(lnx)/x]dx=(lnx)2/2+C,又f(1)=0,得C=0,则f(x)=(lnx)2/2。