第1题:
平行四边形面积公式推导的教学片断:(1)教师布置学生独立思考的内容:我们如何把平行四边形转化为已经知道面积公式的平 面图形来研究它的面积公式呢?(2)学生合作交流不到2分钟,当教师发现有一个小组的同学“过平行四边形的一个顶点 作平行四边形的高,把平行四边形分割成一个直角三角形和一个直角梯形,然后再等量拼成一个长方形.所以平行四边形的面积就是底乘高”的方法后,就立即宣布合作结束。。问题:从与合作学习有关的因素的角度分析本材料。
第2题:
第3题:
第4题:
教学设计一在教";求平行四边形面积";一课时,教师讲授如下:连接AC,因为三角形ABC与三角形CDA的三条边分别相等,所以,这两个三角形全等,三角形ABC的面积等于1/2底乘高,所以,平行四边形ABCD的面积等于底乘高,命题得到证明。然后,教师举了很多不同大小的平行四边形,要求学生求出它们的面积,结果每个问题都得到正确解决。下课前,教师又布置了十几个类似的问题作为家庭作业。教学设计二教师引导学生分析问题,即如何把一个平行四边形变成一个长方形.然后组织学生自主探究,并获得计算平行四边形面积的公式。两则教学设计中教师的教学方法有何不同?两种教学方法对学生的学习将产生怎样的影响?
第5题:
两个()的梯形可以拼成一个平行四边形。
第6题:
平行四边形面积公式推导的教学片段: (1)教师布置学生独立思考的内容:我们如何把平行四边形转化为已经知道面积公式的平面图形来研究它的面积公式呢? (2)学生合作交流不到2分钟,当教师发现有一个小组的同学"过平行四边形的一个顶点作平行四边形的高,把平行四边形分割成一个直角三角形和一个直角梯形,然后再等量拼成一个长方形,所以平行四边形的面积就是底乘高"的方法后,就立即宣布合作结束。 从与合作学习有关的因素的角度分析本材料。
第7题:
一个三角形和一个平行四边形,面积相等,底也相等,那么三角形和平行四边形的高相比较().
第8题:
概括式总结
前呼后应式总结
悬念式总结
比照式总结
第9题:
大小与原来相等
缩小10倍
扩大10倍
第10题:
完全一样
等高
面积相等
第11题:
第12题:
500
50
1000
第13题:
第14题:
第15题:
第16题:
教学设计一:在教学生求平行四边形面积时,教师讲授如下:连接AC,因为三角形ABC与三角形CDA的三边分别相等,所以,这两个三角形全等,三角形ABC的面积等于1/2底乘高,所以,平行四边形ABCD的面积等于底乘高,命题得到证明。然后,教师列举很多不同大小的平行四边形,要求学生求出它们的面积,结果每个问题都正确解决了。下课前,教师又布置了十几个类似的问题作为家庭作业。 教学设计二:教师引导学生分析问题,即如何把一个平行四边形转变成一个长方形,然后组织学生自主探究,并获得计算平行四边形面积的公式。 请问两则教学设计中教师的教学方法有何不同?两种教学方法对学生的学习将产生怎样的影响?
第17题:
一个平行四边形底缩小10倍,高扩大10倍,这个平行四边形的面积()。
第18题:
把一个平行四边形任意分成两个梯形,这两个梯形()总是相等。
第19题:
两个同样的梯形,上底长23厘米,下底长27厘米,高20厘米。如果把这两个梯形拼成一个平行四边形,这个平行四边形的面积是()平方厘米。
第20题:
第21题:
第22题:
第23题: