更多“设f(0)=0,f(1)=16,f(2)=46,则f[0,1]=(),f[0,1,2]=(),f(x)的二次牛顿插值多项式为()。”相关问题
  • 第1题:

    设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( )


    答案:D
    解析:

  • 第2题:

    设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:


    答案:
    解析:

  • 第3题:

    若三次多项式f(x)满足f(2)=f(-1)=f(1)=0,f(0)=4,则f(-2)=( )

    A.0
    B.1
    C.-1
    D.24
    E.-24

    答案:E
    解析:

  • 第4题:

    设fˊ(-1)=1,fˊ(0)=3,fˊ(2)=4,则抛物插值多项式中x2的系数为()。

    • A、-0.5
    • B、0.5
    • C、2
    • D、-2

    正确答案:A

  • 第5题:

    设f(x)=3x2+5,xk=kh,k=0,1,2...,则f[xn,xn=1,xn+2]=();f[xn,xn+1,xn+2,xn+3]=()。


    正确答案:3;0

  • 第6题:

    设函数f(x,y)=x3+y3-3xy,则()。

    • A、f(0,0)为极大值
    • B、f(0,0)为极小值
    • C、f(1,1)为极大值
    • D、f(1,1)为极小值

    正确答案:D

  • 第7题:

    单选题
    设f(x)在x=0处满足f′(0)=f″(0)=…=f(n)(0),f(n+1)(0)>0,则(  )。
    A

    当n为偶数时,x=0是f(x)的极大值点

    B

    当n为偶数时,x=0是f(x)的极小值点

    C

    当n为奇数时,x=0是f(x)的极大值点

    D

    当n为奇数时,x=0是f(x)的极小值点


    正确答案: C
    解析:
    此题可用举例法判断。当n=1时(即n为奇数),f′(0)=0,f″(0)>0。由f″(0)>0知f′(x)在x=0处单调增加。又f′(0)=0,x<0时f′(x)<0;x>0时f′(x)>0。因此f(x)在x=0点处取得极小值。
    当n=2时(即n为偶数),f′(0)=f″(0)=0,f‴(0)>0。由f‴(0)>0知,f″(x)在x=0处单调增加。因f″(0)=0,故f′(x)在x=0附近先减小后增加。f′(0)=0,故f(x)在x=0点处单调。因此x=0既不是f(x)的极大值也不是它的极小值。综上所述D项正确。

  • 第8题:

    填空题
    设f(x)=4x5+2x4+3x2+1和节点xk=k/2,k=0,1,2...则f[x0,x1,...x5]=()

    正确答案: 4
    解析: 暂无解析

  • 第9题:

    单选题
    设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则(  )。
    A

    f(0)=1为f(x)的极小值

    B

    f(0)=1为f(x)的极大值

    C

    (0,f(0))为曲线y=f(x)的拐点

    D

    由g(x)才能确定f(x)的极值或拐点


    正确答案: B
    解析:
    由f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0,得f″(0)=0。f″(x)+f′(x)g(x)+f(x)x=ex-1两边对x求导有
    f‴(x)+f″(x)g(x)+f′(x)g′(x)+f′(x)x+f(x)=ex
    可得f‴(0)=0,①两边再次对x求导得f4(x)+f‴(x)g(x)+2f″(x)g′(x)+f′(x)g″(x)+f″(x)x+2f′(x)=ex,可得f4(0)=1>0,故f(0)=1为f(x)的极小值。故应选(A)。

  • 第10题:

    填空题
    设f(x)=3x2+5,xk=kh,k=0,1,2...,则f[xn,xn=1,xn+2]=();f[xn,xn+1,xn+2,xn+3]=()。

    正确答案: 3,0
    解析: 暂无解析

  • 第11题:

    单选题
    设fˊ(-1)=1,fˊ(0)=3,fˊ(2)=4,则抛物插值多项式中x2的系数为()。
    A

    -0.5

    B

    0.5

    C

    2

    D

    -2


    正确答案: A
    解析: 暂无解析

  • 第12题:

    单选题
    用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。
    A

    f(x0)f″(x)>0

    B

    f(x0)f′(x)>0

    C

    f(x0)f″(x)<0

    D

    f(x0)f′(x)<0


    正确答案: D
    解析: 暂无解析

  • 第13题:

    设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,


    答案:
    解析:

  • 第14题:

    设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上



    A.A当f'(x)≥0时,f(x)≥g(x)
    B.当f'(x)≥0时,f(x)≤g(x)
    C.当f"(x)≥0时,f(x)≥g(x)
    D.当f"(x)≥0时,f(x)≤g(x)

    答案:D
    解析:
    由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1-x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1-x)+f(1)x的下方,即f(x)≤g(x)故应选(D).
    (方法二)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,
    则 F'(x)=f'(x)+f(0)-f(1),F"(x)=f"(x).当f"(x)≥0时,F"(x)≥0,则曲线y=F(x)在区间[0,1]上是凹的.又F(0)=F(1)=0,从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
    (方法三)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,

    则 F(x)=f(x)[(1-x)+x]-f(0)(1-x)-f(1)x

    =(1-x)[f(x)-f(0)]-x[f(1)-f(x)]
       =x(1-x)f'(ξ)-x(1-x)f'(η) (ξ∈(0,x),η∈(x,1))
       =x(1-x)[f'(ξ)-f'(η)]
      当f"(x)≥0时,f'(x)单调增,f'(ξ)≤f'(η),从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).

  • 第15题:

    设函数f(x)在(0,1)内可导,f'(x)>0,则f(x)在(0,1)内(  )

    A.单调减少
    B.单调增加
    C.为常量
    D.不为常量,也不单调

    答案:B
    解析:
    由于f'(x)>0,可知f(x)在(0,1)内单调增加.因此选B.

  • 第16题:

    设f(x)=4x5+2x4+3x2+1和节点xk=k/2,k=0,1,2...则f[x0,x1,...x5]=()


    正确答案:4

  • 第17题:

    用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。

    • A、f(x0)f″(x)>0
    • B、f(x0)f′(x)>0
    • C、f(x0)f″(x)<0
    • D、f(x0)f′(x)<0

    正确答案:A

  • 第18题:

    设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。


    正确答案:正确

  • 第19题:

    单选题
    设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。
    A

    f(0)是f(x)的极大值

    B

    f(0)是f(x)的极小值

    C

    点(0,f(0))是曲线y=f(x)的拐点

    D

    f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点


    正确答案: C
    解析:
    已知f″(x)+[f′(x)]2=x,方程两边对x求导得f‴(x)+2f″(x)·f′(x)=1,由f′(0)=0,则f″(0)=0,f‴(0)=1,故在点x=0的某邻域内f″(x)单调增加,即f″(0)与f″(0)符号相反,故点(0,f(0))是曲线y=f(x)的拐点。

  • 第20题:

    问答题
    设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

    正确答案:
    首先证明存在性。
    作辅助函数F(x)=f(x)-x,由题设00。
    根据连续函数介值定理,在(0,1)上至少存在一点ξ∈(0,1),使得F(ξ)=0。即f(ξ)-ξ=0。
    用反证法证明唯一性。
    设012<1,且f(x1)=x1,f(x2)=x2,即F(x1)=F(x2)=0。
    根据罗尔定理知,存在x0∈(x1,x2)⊂(0,1)使得F′(x0)=0,即f′(x0)=1,这与题目中f′(x)≠1相矛盾,故在(0,1)内有且仅有一个x,使得f(x)=x。
    解析: 暂无解析

  • 第21题:

    填空题
    设f(0)=0,f(1)=16,f(2)=46,则f[0,1]=(),f[0,1,2]=(),f(x)的二次牛顿插值多项式为()。

    正确答案: 16,7,0+16(x-0)+7(x-0)(x-1)
    解析: 暂无解析

  • 第22题:

    判断题
    设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第23题:

    问答题
    设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

    正确答案:
    构造函数F(x)=x2f(x),由于f(x)在[0,1]上二阶可导,则F(x)也在[0,1]上二阶可导。
    又F′(0)=[2xf(x)+x2f′(x)]x=0=0,F″(x)=2f(x)+4xf′(x)+x2f″(x)。
    故根据泰勒公式有F(1)=F(0)+F′(0)(1-0)+F″(ξ)(1-0)2/(2!)=0,其中ξ∈(0,1)。
    所以F″(ξ)/2=[2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)]/2=0。
    即2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)=0。
    解析: 暂无解析