全低压空分设备中液化器起什么作用,为什么可以自平衡调节返流出口温度?

题目

全低压空分设备中液化器起什么作用,为什么可以自平衡调节返流出口温度?


相似考题
更多“全低压空分设备中液化器起什么作用,为什么可以自平衡调节返流出口温”相关问题
  • 第1题:

    简述为什么不能以减少水量调节阳极保护出口酸温?


    正确答案: 如果减少阳极保护出口水量,虽然能达到提高系统酸温的目的,但是水速过慢,Cl-聚集,从而产生孔蚀,并影响换热,导致换热管壁温度升高,腐蚀加剧。

  • 第2题:

    冷凝蒸发器在空分设备中起什么作用?


    正确答案: 氧、氮的分离是通过精馏来实现的。精馏过程必须有上升蒸气和下流液体。为了得到氧、氮产品,精馏过程是在上、下两个塔内实现双级精馏过程。冷凝蒸发器是联系上塔和下塔的纽带。它用于上塔底部的回流下来的液氧和下塔顶部上升的气氮之间热交换。
    液氧在冷凝蒸发器中吸收热量而蒸发为气氧。其中一部分作为产品气氧送出,而大部分(70%~80%)供给上塔,作为精馏用的上升蒸气。气氮在冷凝蒸发器内放出热量而冷凝成液氮。一部分直接作为下塔的回流液,一部分经节流降压后供至上塔顶部,作为上塔的回流液,参与精馏过程。
    由于下塔的压力高于上塔的压力,所以下塔气氮的饱和温度反而高于上塔液氧的饱和温度。液氧吸收温度较高的气氮放出的冷凝潜热而蒸发。因此而得名叫“冷凝蒸发器”。冷凝蒸发器是精馏系统中必不可少的重要换热设备。它工作的好坏关系到整个空分装置的动力消耗和正常生产。所以要正确操作和维护好冷凝蒸发器。

  • 第3题:

    关于制氧机所设液化器,下列说法正确的是()

    • A、起动阶段是由液化器产生液空而积累液体的
    • B、起动阶段投用液化器可以保证板式自清除
    • C、起动阶段投用液化器可以减少板式复热不足
    • D、起动阶段投用液化器可以尽早产生液体

    正确答案:A

  • 第4题:

    小型空分设备分馏塔加温时,为什么要对低压压力进行控制?


    正确答案: 分馏塔加温时控制低压的目的是加快分馏塔的加温速度。如果低压压力不加控制,加温气体很快从阻力较小的氧气、氮气排出管中排出,阻力较大的小管道(如分析阀、液面计阀等)和膨胀机部位的加热气量很小,易造成有的管道温度过高,而有的管路加温不彻底。因此一开始加温时要关小氧气、氮气放空阀,限制排放量,使低压压力提高,以增加阻力大的管路的气量,使加温彻底、速度加快。
    在分馏塔加温的同时,往往分子筛纯化器也需加温。若低压压力过低,就会影响纯化器的再生。但是压力也不能超过正常工作压力,以保证安全。

  • 第5题:

    全低压制氧机在开始积累液氧时,是否一定要保持液空液面,为什么?


    正确答案: 全低压制氧机的启动积液阶段,是下塔首先出现液空,然后在上塔出现液氧。塔内积累液体所需的冷量主要来自膨胀机,利用膨胀后的低温气体使一部分空气在液化器中液化。而上塔本身并不能产生液体,它主要是靠将下塔的液体打入上塔。在积液阶段,为了尽快地积累起液面,主要是应使冷量尽可能多地转移到塔内,要避免切换式换热器冷量过剩而出现过冷以及热端温差扩大、冷损增加的现象。
    至于如何将膨胀空气冷量回收和转移到塔内,无论是靠液化器先将冷量转移给下塔,然后再供给上塔,还是通过过冷器直接转移给上塔都是可以的。如果液空过冷器的冷流体通道可以与膨胀机后的通道直接接通的话(例如将过冷器与液化器设置成一体),也就可以利用液空过冷器回收膨胀气体的部分冷量直接给上塔,过冷器同时起到液化器的作用。即同时靠液化器与过冷器将冷量转移到塔内,可加速液体的积累。在这种情况下,可暂时不顾及保持下塔的液面,开大液空节流阀,让尽可能多的液空夹带气体通过过冷器,加强过冷器的换热,以回收更多的冷量。有的制氧机在流程设计中甚至不设置液化器,只靠过冷器在启动时作为液化器使用,先从上塔开始积累液体。

  • 第6题:

    对自油除流程的全低压空分设备,在启动阶段为什么要缩短切换周期?


    正确答案: 我们知道,全低压空分设备为了保证自清除,切换式换热器的冷端温差必须控制在为保证自清除所允许温差范围内。冷端自清除温差是正流空气通过冷端截面与返流气体通过该截面时的温度之差。在正常操作时,测定的冷端温差即为自清除温差。但在空分装置的启动阶段,切换式换热器的温度随时间在不断降低,正返流气体流过该通道的温度的自清除温差还远大于测得的冷端温差。并且,随切换时间的延长及温降速度的加快,冷端自清除温差将扩大。所以,在空分装置在启动阶段,随着切换式换热器的冷却,为了能确保自清除,必须缩短切换周期。
    切换周期的缩短,有利于对冻结下来的水分及二氧化碳的清除。但此时的空气切换损失较大。
    对于蓄冷器来讲,由于它是蓄冷式的换热器,切换时间越短,冷端温差就越小,而且冻结下来的水分及二氧化碳的量减少,冻结层薄,就更容易清除。
    总之,在空分设备启动中,缩短切换周期是保证切换式换热器自清除的有效措施。

  • 第7题:

    为什么说阻遏蛋白对乳糖操纵子起负调节作用,而在降解物阻遏中的调节蛋白CAP起正调节作用?


    正确答案:当无诱导物乳糖存在时,调节基因编码的阻遏蛋白处于活性状态,阻遏蛋白可与操纵基因相结合,阻止了RNA聚合酶与启动基因的结合,使结构基因(Z、Y、A)不能编码参与乳糖分解代谢的3种酶,既乳糖操纵子关闭,因此阻遏蛋白为负调控因子。但在大肠杆菌中含有一个称为代谢产物活化蛋白(CAP),又称cAMP受体蛋白(CRP),CAP及cAMP,都是lacmRNA合成所必需的,CAP能够与cAMP形成复合物,cAMP-CAP复合物结合在乳糖操纵子的启动基因上,可促进转录的进行。因此cAMP-CAP是一个不同于阻遏蛋白的正调控因子。

  • 第8题:

    为什么全低压空分设备能将膨胀空气直接送入上塔?


    正确答案: 由于在全低压空分设备的上塔其精馏段的回流比大于最小回流比较多,就有可能利用多余回流液的精馏潜力。因此可将膨胀后的空气直接送入上塔参与精馏,来回收膨胀空气中的氧,以提高氧的提取率。

  • 第9题:

    问答题
    为什么全低压空分设备能将膨胀空气直接送入上塔?

    正确答案: 由于在全低压空分设备的上塔其精馏段的回流比大于最小回流比较多,就有可能利用多余回流液的精馏潜力。因此可将膨胀后的空气直接送入上塔参与精馏,来回收膨胀空气中的氧,以提高氧的提取率。
    解析: 暂无解析

  • 第10题:

    问答题
    如何缩短自清除流程全低压空分设备的启动时间?

    正确答案: 板翅式切换式换热器的热容量小,空分设备的启动时间较短,在30~40小时的水平。就操作来说,操作要领为,要防止水份和二氧化碳带入塔内,严格控制好冷端和热端温差;注意主冷的冷却;充分发挥多台膨胀机的制冷能力;合理分配、利用冷量,依靠设备本身的潜力使启动时间缩短。此外,借助外部冷源也是缩短启动时间的有效办法。当主冷冷却结束,出现液体时,从外部输入液氧、液空或液氮,当主冷液位达到正常液面时可停止输液,空分塔可进入调纯阶段。采用这种输液技术,启动时间可缩短12小时以上,这是一种很经济的方法。
    解析: 暂无解析

  • 第11题:

    问答题
    为什么全低压空分设备中规定要经常排放相当于1%氧产量的液氧到塔外蒸发呢?

    正确答案: 以往认为,分馏塔爆炸的原因是乙炔引起的,在防爆系统中设有液空和液氧吸附器,吸附乙炔的效率可达98%左右。国外经过多年实践和研究发现,爆炸源除了乙炔之外,尚有饱和及不饱和的碳氢化合物--烃类,如乙烷、乙烯、丙烷、丙烯等在液氧中富集。这些物质在吸附器中也能被吸附掉一部分,但是吸附效率只有60%~65%。由于它们在液氧中的分压很低,随气氧一起排出的数量很少(除甲烷外),剩下的就会在液氧中逐渐浓缩,一旦增浓到爆炸极限就有危险。
    为了避免液氧中烃类浓度的增加,根据物料平衡,需要从主冷引出一部分液氧,把烃类从主冷抽出一部分。抽出的液氧最小量相当于气氧产量的1%再另行气化。还规定把液氧面提高,避免产生液氧干蒸发(在蒸发管出口不含液氧),防止碳氢化合物附着在管壁上,以增加设备的安全性。在国产全低压空分流程中也已采用了这项措施。
    解析: 暂无解析

  • 第12题:

    问答题
    液空恒流阀起什么作用?

    正确答案: (1)出于安全考虑
    粗氩塔冷凝器中的液空与主冷凝蒸发器中的液氧一样需要处于流动状态,以防止液空中的碳氢化合物在冷凝器中聚集,从而防止冷凝器发生爆炸。恒流阀即使处于关闭状态,液空也可通过阀头上的两个小孔定量会上塔。
    (2)调节粗氩塔冷凝器的热负荷
    液空回流量增加,回流液空中的低沸点氮组分增加,液空蒸发侧的平均温度温度降低,冷凝器的温差增大,热负荷增加,粗氩塔阻力升高,粗氩中的氧含量下降。
    解析: 暂无解析

  • 第13题:

    低压配电装可用于什么配电设备?起什么作用?


    正确答案:可用于交直流配电系统,作用是:可作为动力,配电,照明灯设备的控制装置。

  • 第14题:

    为什么大、中型空分设备适合采用全低压流程?


    正确答案: 降低空分设备的工作压力,可以降低产品的单位能耗。全低压空分设备的工作压力接近下塔的工作压力,而小型空分设备的工作压力是远高于下塔的压力。工作压力低,膨胀产生的单位制冷量也少。为了保持冷量平衡,首先要求单位冷损也小。对大型空分设备,单位跑冷损失随着装置容量增大而减小,同时,设计时也选取较小的热端温差,单位热交换不完全冷损失相对也较小,这为降低工作压力创造了有利条件。
    此外,工作压力低,就要求膨胀机有高的效率,以便在同样压差的情况下能产生较大的制冷量。透平膨胀机随着容量增大,最佳转速降低,效率提高。因此,它对大型空分设备最为适合,使降低工作压力成为可能。
    对于小型空分设备,相对的冷损大,即使采用透平膨胀机,转速高达105r/min以上,效率也较低,维护管理要求很高。此外,对于大型空分设备,膨胀量相对于加工空气量较小,膨胀制冷后的空气仍可参与精馏,从中提取氧。而小型空分设备若采用低压流程,因为产生制冷量所需的膨胀气量大,不能全部参与精馏,氧的提取率就很低,单位产品的能耗仍然会很大。因此,全低压流程对大、中型空分装置最为适合。
    目前,随着分子筛吸附净化和增压透平流程的采用,以及板翅式热交换器技术的进步,低压空分设备的最小容量已设计到340m3/h氧产量,800m3/h氮产量(KDON-340/800),空压机的排气压力为0.59MPa。

  • 第15题:

    为什么中压空分设备可以通过提高空气压力来提高液氧面?


    正确答案: 空分塔的冷量是否充足,集中反映在主冷的液氧面上。当冷量不足以平衡冷损时,主冷的液氧面会慢慢下降。如果不是由于设备泄漏等故障,应设法增大制冷量来弥补冷损,恢复液氧面。
    对于低压空分设备,空气压力接近下塔压力,并不是随意可以提高。而中压空分设备的空气压力远高于下塔压力,它分别通过节流阀和膨胀机膨胀后再进入下塔。由于工作压力不影响精馏工况,可根据冷量的需要来决定。并且,节流效应制冷量在总制冷量中所占的比例较大。例如,当工作压力为3.0MPa时,每立方米加工空气的节流效应制冷量为8.4kJ/m3,每立方米膨胀空气的膨胀机制冷量为37.7kJ/m3。一般,膨胀空气量为加工空气量的70%左右,因此,节流效应制冷量要占总制冷量的1/4左右。对活塞式膨胀机流程,当配合调节膨胀机凸轮和高压空气节流阀,使高压空气压力提高时,则膨胀机制冷量与节流效应制冷量同时增大,对提高液氧液面效果显著。
    当膨胀机的凸轮已关得很小,不能靠它调节,但又需要更多的冷量时,可采取关小进膨胀机的通-6阀来保持高压。这时,虽然膨胀机前的压力没有提高,但节流效应制冷量增大,总的制冷量仍可增加有利于加速液体积累。这种调节方法只有在通-6阀关得很小(一转以内),高压空气压力与膨胀机前压力不等时才有效。并且每次调节只能转动3°~5°,不能调得过大。

  • 第16题:

    为什么在有的分子筛净化流程的空分设备中仍设置液氧自循环吸附系统?


    正确答案: 关于分子筛净化流程的空分设备中是否还要设置液氧防爆系统,看法不一。德国引进的以及国产的这种流程,不再设置防爆系统。但从美国和法国引进的大型分子筛净化流程的空分设备仍设置液氧自循环吸附系统。设置该系统的理由是:
    1)从液氧防爆的观点看,设置比不设置更安全。因为在分子筛纯化器中,分子筛可以对空气中的杂质水分、二氧化碳、乙炔共吸附。对极性水分子的吸附量较大,其次吸附不饱和烃乙炔,而后吸附二氧化碳。虽然,分子筛能将空气中的乙炔和一些碳氢化合物较彻底地吸附并清除掉,但是,分子筛对空气中所包含的某些碳氢化合物是不吸附的,例如:分子筛对甲烷完全不吸附,对乙烷、乙烯及丙烷也只能部分吸附。这些没被吸附的碳氢化合物随空气进入精馏塔下塔,溶解在液空中,随液空打入上塔,随上塔回流液下流,积聚在上塔底部的液氧中。由于这些碳氢化合物的累积,有可能造成制氧机爆炸事故,这种事故也发生过。所以,为了确保制氧机的安全运行,分子筛纯化流程也有设置液氧循环吸附器的,以液相吸附的方式清除各种碳氢化合物。
    2)液氧中的微量乙炔,经过长时间在液氧中积聚,可能会慢慢增浓,甚至达到危险浓度。有了液氧自循环吸附系统可保证乙炔不会增浓。
    3)考虑到分子筛吸附系统也会有工作不正常的情况。例如再生不彻底,空冷塔带水等因素也会使危险杂质进入液氧中,有了自循环吸附系统则可更放心。
    因为大型空分设备每小时进入装置的空气量很大,乙炔等碳氢化合物及二氧化碳等杂
    质由于分子筛吸附不均匀,或多或少会带进塔内。在流程中没有液空吸附器,增设液氧自循环吸附系统则更为可靠。并且,安设液氧自循环吸附系统后,主冷凝蒸发器的传热面积可以相应减少。

  • 第17题:

    为什么全低压空分装置能将膨胀空气直接送入上塔?


    正确答案: 全低压空分装置的论题大部分靠膨胀机产生,而全低压空分装置的工作压力即为下塔的工作压力,在5.5-6.5绝对大气压左右。该压力的气体在膨胀机膨胀制冷后,压力为1.3大气压左右,已不可能象中压流程那样送入下塔参加精馏。如果膨胀后的空气只在热交换器内回收冷量,不参加精馏,则这部分加工空气中的氧、氮就不能提取,必将影响到氧、氮的产量和提取率。由于在全低压空分装置的上塔其精馏段的回流比大于最小回流比较多,就有可能利用这多余流液的精馏潜力。因此可将膨胀后的空气直接送入上塔参与精馏,来回收膨胀空气中的氧、氮以提高氧的提取率。由于
    全低压空分装置将膨胀空气直接送入上塔,因此制冷量的变化将引起膨胀量的变化,必然要影响上塔的精馏。制冷与精馏的紧密联系是全低压空分装置的最大特点。

  • 第18题:

    曲轴上的平衡重起什么作用?为什么有的曲轴上没有平衡重?


    正确答案: 为了减小不平衡离心力、减轻主轴承负荷,改善其工作条件,一般都在曲柄的相反方向设置平衡重。
    加平衡重会导致曲轴质量和材料消耗增加,锻造工艺复杂。

  • 第19题:

    为什么说在酶诱导中的调节蛋白起负调节作用,而在降解物阻遏中的调节蛋白起正调节作用? 


    正确答案:酶的诱导和阻遏是在调节基因产物阻遏蛋白(调节蛋白)的作用下,通过操纵基因控制结构基因或基因组的转录而发生的。由于经济的原则,细菌通常并不合成那些在代谢上无用的酶,因此一些分解代谢的酶类只在有关的底物或底物类似物存在时才被诱导合成;而一些合成代谢的酶类在产物或产物类似物足够量存在时,其合成被阻遏。在酶诱导时,阻遏蛋白与诱导物相结合,因而失去封闭操纵基因的能力。 对代谢降解物敏感的操纵子受到降解物的阻遏,有关的调节蛋白起正调节作用。当细菌在含有葡萄糖和乳糖的培养基中生长时,通常优先利用葡萄糖,只有葡萄糖耗尽后,细菌经过一段停滞期,在乳糖诱导下才能利用乳糖,这种现象称为葡萄糖效应或降解物阻遏。

  • 第20题:

    液空恒流阀起什么作用?


    正确答案: (1)出于安全考虑
    粗氩塔冷凝器中的液空与主冷凝蒸发器中的液氧一样需要处于流动状态,以防止液空中的碳氢化合物在冷凝器中聚集,从而防止冷凝器发生爆炸。恒流阀即使处于关闭状态,液空也可通过阀头上的两个小孔定量会上塔。
    (2)调节粗氩塔冷凝器的热负荷
    液空回流量增加,回流液空中的低沸点氮组分增加,液空蒸发侧的平均温度温度降低,冷凝器的温差增大,热负荷增加,粗氩塔阻力升高,粗氩中的氧含量下降。

  • 第21题:

    问答题
    全低压空分设备中液化器起什么作用?

    正确答案: 在启动积液阶段,液化器起到液化空气、积累液体的作用,在正常运转阶段,在切换式换热器(或蓄冷器)和精馏塔之间,液化器能起到冷量分配、调节的作用。
    解析: 暂无解析

  • 第22题:

    问答题
    为什么说阻遏蛋白对乳糖操纵子起负调节作用,而在降解物阻遏中的调节蛋白CAP起正调节作用?

    正确答案: 当无诱导物乳糖存在时,调节基因编码的阻遏蛋白处于活性状态,阻遏蛋白可与操纵基因相结合,阻止了RNA聚合酶与启动基因的结合,使结构基因(Z、Y、A)不能编码参与乳糖分解代谢的3种酶,既乳糖操纵子关闭,因此阻遏蛋白为负调控因子。但在大肠杆菌中含有一个称为代谢产物活化蛋白(CAP),又称cAMP受体蛋白(CRP),CAP及cAMP,都是lacmRNA合成所必需的,CAP能够与cAMP形成复合物,cAMP-CAP复合物结合在乳糖操纵子的启动基因上,可促进转录的进行。因此cAMP-CAP是一个不同于阻遏蛋白的正调控因子。
    解析: 暂无解析

  • 第23题:

    问答题
    为什么说在酶诱导中的调节蛋白起负调节作用,而在降解物阻遏中的调节蛋白起正调节作用?

    正确答案: 酶的诱导和阻遏是在调节基因产物阻遏蛋白(调节蛋白)的作用下,通过操纵基因控制结构基因或基因组的转录而发生的。由于经济的原则,细菌通常并不合成那些在代谢上无用的酶,因此一些分解代谢的酶类只在有关的底物或底物类似物存在时才被诱导合成;而一些合成代谢的酶类在产物或产物类似物足够量存在时,其合成被阻遏。在酶诱导时,阻遏蛋白与诱导物相结合,因而失去封闭操纵基因的能力。 对代谢降解物敏感的操纵子受到降解物的阻遏,有关的调节蛋白起正调节作用。当细菌在含有葡萄糖和乳糖的培养基中生长时,通常优先利用葡萄糖,只有葡萄糖耗尽后,细菌经过一段停滞期,在乳糖诱导下才能利用乳糖,这种现象称为葡萄糖效应或降解物阻遏。
    解析: 暂无解析