更多“从1,2,3,…,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除,问最多可取几个数()A、14个B、15个C、16个D、17个”相关问题
  • 第1题:

    从1,2,3,……,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除。问最多可取几个数?()

    A.14个
    B.15个
    C.16个
    D.17个

    答案:C
    解析:
    任意两个数之积不能被4整除,即两个数分别不能被4整除,那么所取数中最多只能有一个偶数,且该偶数不能为4的倍数;共有15个奇数,所以最多可以取15+1=16个数。故正确答案为C。

  • 第2题:

    从1、2、3、4、5、6、7、8、9这几个数字中选择3个数字,使它们的乘积能够被9整除,问共有多少种不同的方法?( )

    A.34
    B.36
    C.27
    D.25

    答案:A
    解析:
    9=1×9=3×3。1~9中的三个自然数的乘积能被9整除,可以分为两种情况:(1)这三个数字中有9,则另外两个数字可在剩下8个数中任意选择,有C28=28种;(2)这三个数字中没有9,则这三个数字中必有3和6.第三个数字有9-3=6种选择。由加法原理可知,共有28+6=34种选择。

  • 第3题:

    1~100,这100个自然数中,最多可以选出多少个数,才能保证任意两个数之和都不能被3整除?()

    A.33
    B.34
    C.35
    D.36

    答案:C
    解析:
    这100个数可以分成三类:①能被3整除的数,共有33个;②被3除余数是1的数,共有34个;③被3除余数是2的数,共有33个。显然,把第②组的数全选出,再从第①组任选一个数,保证任两个数字之和不能被3整除,即最多可以选出34+1=35个,故本题选C。

  • 第4题:

    在1,2,3,…,40中,至少要取出几个数,才能保证取出的数中一定有一个数能被4整除?()

    • A、3
    • B、4
    • C、21
    • D、31

    正确答案:D

  • 第5题:

    从1,2,3,…,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除,问最多可取几个数()

    • A、14个
    • B、15个
    • C、16个
    • D、17个

    正确答案:C

  • 第6题:

    从1、2、3、4、5中随机抽取3个数,问这3个数之和至少能被其中一个数整除的概率是多少?

    A. 10%
    B. 30%
    C. 60%
    D. 90%

    答案:D
    解析:
    三个数中只要含有1就能满足,共C4,2=6种,三个数中含有2的话,三个数的和必须是偶数,共C3,2-1=2种,不含1和2只有3、4、5能被3整除,因此共有9种满足的情况,总数为c5,3=10,概率为9/10=90%。

  • 第7题:

    从1.2.3.4.5.6.7.8.9这九个数字中,随机取出一个数字,这个数字是奇数的概率是()


    答案:B
    解析:

  • 第8题:

    从1、2、3、4、5、6、7、8、9这几个数字中选择3个数字,使它们的乘积能够被9整除,问共 有多少种不同的方法?

    a.34 b.36 c.27 d.25


    答案:A
    解析:
    9=lx9=3x3。1~9中的三个自然数的乘积能被9整除,可以分为两种情况:(1)这三个数 字中有9,则另外两个数字可在剩下8个数中任意选择,有C82=28种;(2)这三个数字中没有9,则这三个数字中 必有3和6,第三个数字有9-3=6种选择。由加法原理可知,共有28+6=34种选择。

  • 第9题:

    在1和2015之间(包括1和2015在内)不能被4、5、6三个数任意一个数整除的数有()个。


    正确答案:1075

  • 第10题:

    单选题
    从1,2,3,4,…,1000这1000个数中,每次取出两个数,使其和大于1000,共有几种取法?(  )
    A

    250500

    B

    250000

    C

    249500

    D

    200500


    正确答案: B
    解析:
    A=1,B可取1000,有1种取法;A=2,B可取1000、999,有2种取法;A=3,B可取1000、999、998,有3种取法;A=500,B可取1000、999、…、501,有500种取法;A=501,B可取1000、999、……、502,有499种取法;……A=1000,B可取1,有1种取法。共有1+2+3+……+499+500+499+……+3+2+1=250000种不同的取法。