更多“两个等价向量组所含向量的个数一定相等.”相关问题
  • 第1题:

    设A,B,C均为n阶矩阵,若AB=C,且B可逆,则



    A.A矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的列向量组与矩阵B的列向量组等价

    答案:B
    解析:
    对矩阵A,C分别按列分块,记A=(α1,α2,…,αn),C=(γ,γ,…,γ).  由AB=C有

      可见

    即C的列向量组可以由A的列向量组线性表出.
      因为B可逆,有CB^-1=A.类似地,A的列向量组也可由C的列向量组线性表出,因此选(B).

  • 第2题:

    3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().

    • A、对任意一组不全为0的数k1,k2,…,kM,都有后
    • B、向量组A中任意两个向量都线性无关
    • C、向量组A是正交向量组
    • D、αM不能由线性表示

    正确答案:A

  • 第3题:

    单选题
    n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。
    A

    α()1α()2,…,α()s中没有零向量

    B

    向量组的个数不大于维数,即s≤n

    C

    α()1α()2,…,α()s中任意两个向量的分量不成比例

    D

    某向量β()可由α()1α()2,…,α()s线性表示,且表示法唯一


    正确答案: D
    解析:
    A项,例如α()1=(1,-1,2),α()2=(2,-2,4)都是非零向量,但α()1α()2线性相关;
    B项,如A项中的例子,α()1α()2个数小于维数,但其线性相关;
    C项,例如α()1=(1,0,-1),α()2=(0,3,0),α()3=(1,3,-1)中任意两个向量的分量均不成比例,但α()1α()2α()3线性相关;
    D项,β()可由α()1α()2,…,α()s线性表示,且表示法唯一,即α()1α()2,…,α()sα()1α()2,…,α()sβ()的线性极大无关组,故α()1α()2,…,α()s线性无关。

  • 第4题:

    单选题
    设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则(  )。
    A

    必定r<s

    B

    向量组中任意个数小于r的部分组线性无关

    C

    向量组中任意r个向量线性无关

    D

    若s>r,则向量组中任意r+l个向量必线性相关


    正确答案: A
    解析:
    A项,r可能与s相等;
    B项,若r<s,向量组中可以有两个向量成比例;
    C项,当r小于s/2时,r个向量可能相关;
    D项,任意r+1个向量若不线性相关,则向量组的秩为r+1,故必相关。

  • 第5题:

    单选题
    设向量组的秩为r,则:()
    A

    该向量组所含向量的个数必大于r

    B

    该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关

    C

    该向量组中有r个向量线性无关,有r+1个向量线性相关

    D

    该向量组中有r个向量线性无关,任何r+1个向量必线性相关


    正确答案: C
    解析: 暂无解析

  • 第6题:

    单选题
    设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。
    A

    向量组α()1α()2,…,α()m可以由β()1β()2,…,β()m线性表示

    B

    向量组β()1β()2,…,β()m可以由α()1α()2,…,α()m线性表示

    C

    向量组α()1α()2,…,α()m与向量组β()1β()2,…,β()m等价

    D

    矩阵A=(α()1α()2,…,α()m)与矩阵B=(β()1β()2,…,β()m)等价


    正确答案: D
    解析:
    例如α()1=(1,0,0,0),α()2=(0,1,0,0),β()1=(0,0,1,0),β()2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;
    D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β()1β()2,…,β()m线性无关。

  • 第7题:


    A.必定r<s
    B.向量组中任意个数小于r的部分组线性无关
    C.向量组中任意r个向量线性无关
    D.若s>r则向量组中任r+l个向量必线性相关

    答案:D
    解析:

  • 第8题:

    单选题
    设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).
    A

    向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示

    B

    向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示

    C

    向量组α1,…,αm与向量组β1,…,βm等价

    D

    矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m


    正确答案: C
    解析:
    例如α1=(1,0,0,0),α2=(0,1,0,0),β1=(0,0,1,0),β2=(0,0,0,1),各自都线性无关,但它们之间不能相互线性表示,也就不可能有等价关系,排除A、B、C项;D项,矩阵A与矩阵B等价,则它们的秩相等,故向量组β1,β2,…,βm线性无关.

  • 第9题:

    单选题
    设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: A
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第10题:

    单选题
    设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。
    A

    充分非必要条件

    B

    必要非充分条件

    C

    充分必要条件

    D

    既非充分也非必要条件


    正确答案: C
    解析:
    两向量组等价的充要条件是它们有相同的秩。

  • 第11题:

    单选题
    设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。
    A

    此两个向量组等价

    B

    秩(α()1α()2,…,α()sβ()1β()2,…,β()t)=r

    C

    α()1α()2,…,α()s可以由β()1β()2,…,β()t线性表示时,此二向量组等价

    D

    s=t时,二向量组等价


    正确答案: C
    解析:
    两向量组等价的充要条件是所含向量的个数相等,且能相互线性表示。

  • 第12题:

    单选题
    设A,B为满足AB=0(→)的任意两个非零矩阵,则必有(  )。
    A

    A的列向量组线性相关,B的行向量组线性相关

    B

    A的列向量组线性相关,B的列向量组线性相关

    C

    A的行向量组线性相关,B的行向量组线性相关

    D

    A的行向量组线性相关,B的列向量组线性相关


    正确答案: D
    解析:
    设A为m×n矩阵,B为n×s矩阵,由AB=0()知r(A)+r(B)≤n,又r(A)≥1,r(B)≥1,因此r(A)<n,r(B)<n,说明A的列向量组线性相关,B的行向量组线性相关。