参考答案和解析
正确
更多“1行n列的矩阵A左乘以n行1列的矩阵B,则乘积矩阵AB是n阶方阵。”相关问题
  • 第1题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第2题:

    设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



    答案:C
    解析:

  • 第3题:

    设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )


    A.r(A)=r(B)=m
    B.r(A)=m r(B)=n
    C.r(A)=n r(B)=m
    D.r(A)=r(B)=n

    答案:A
    解析:

  • 第4题:

    设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。


    答案:
    解析:

  • 第5题:

    设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.
      (1)证明B可逆;
      (2)求AB^-1.


    答案:
    解析:

  • 第6题:

    设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.


    答案:
    解析:
    【证明】首先r(B)≤min{m,n)=n,由AB=E得r(AB)=n,而,.(AB)≤r(B),所以r(B)≥n,从而r(B)=n,于是B的列向量组线性无关.

  • 第7题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第8题:

    设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).



    答案:D
    解析:

  • 第9题:

    设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。

    • A、-A*
    • B、A*
    • C、(-1)nA*
    • D、(-1)n-1A*

    正确答案:D

  • 第10题:

    填空题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

    正确答案: -(A+E)/2
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。

  • 第11题:

    单选题
    设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于(  )。
    A

    |A|2

    B

    |A|n

    C

    |A|2n

    D

    |A|2n-1


    正确答案: D
    解析:
    ||A|A*|=|A|n·|A*|=|A|n·|A|n-1=|A|2n-1

  • 第12题:

    单选题
    下列结论中正确的是(    )
    A

    矩阵A的行秩与列秩可以不等

    B

    秩为r的矩阵中,所有r阶子式均不为零

    C

    若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零

    D

    秩为r的矩阵中,不存在等于零的r-1阶子式


    正确答案: D
    解析:

  • 第13题:

    设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

    A.r>m
    B.r=m
    C.rD.r≥m

    答案:C
    解析:
    显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

  • 第14题:

    设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=



    A.E
    B.-E
    C.A
    D.-A

    答案:A
    解析:

  • 第15题:

    下列结论中正确的是(  )。

    A、 矩阵A的行秩与列秩可以不等
    B、 秩为r的矩阵中,所有r阶子式均不为零
    C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零
    D、 秩为r的矩阵中,不存在等于零的r-1阶子式

    答案:C
    解析:
    A项,矩阵A的行秩与列秩一定相等。B项,由矩阵秩的定义可知,若矩阵A(m×n)中至少有一个r阶子式不等于零,且r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。即秩为r的矩阵中,至少有一个r阶子式不等于零,不必满足所有r阶子式均不为零。C项,矩阵A的行列式不等于零意味着矩阵A不满秩,n阶矩阵的秩为n时,所对应的行列式的值大于零;当n阶矩阵的秩<n时,所对应的行列式的值等于零。D项,秩为r的矩阵中,有可能存在等于零的r-1阶子式,如秩为2的矩阵



    中存在等于0的1阶子式。

  • 第16题:

    设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA


    答案:
    解析:

  • 第17题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第18题:

    设A与B都是n阶正交矩阵,证明AB也是正交矩阵.


    答案:
    解析:

  • 第19题:

    设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有( ).《》( )


    答案:C
    解析:

  • 第20题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )

    A.r(A)=m,r(B)=m
    B.r(A)=m,r(B)=n
    C.r(A)=n,r(B)=m
    D.r(A)=n,r(B)=n

    答案:A
    解析:
    设A为m×n矩阵,B为n×s矩阵,因此r(A)≤m,r(B)≤m.由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m.

  • 第21题:

    单选题
    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。
    A

    r(A)=m,r(B)=m

    B

    r(A)=m,r(B)=n

    C

    r(A)=n,r(B)=m

    D

    r(A)=n,r(B)=n


    正确答案: C
    解析:
    设A为m×n矩阵,B为n×m矩阵,因此r(A)≤m,r(B)≤m。
    由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m。

  • 第22题:

    单选题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=(  )。
    A

    0

    B

    1

    C

    2

    D

    3


    正确答案: A
    解析:
    取基本单位向量组为ε()1ε()2,…,ε()n
    当m=n时,由对任意B都有AB=0,则对B=(ε()1ε()2,…,ε()n)=En也成立,即AE=0,故A=0。
    当m>n时,取B=(ε()1ε()2,…,ε()nB()1)=(EnB()1),则由AB=A(EnB()1)=0,知AEn=0,故A=0。

  • 第23题:

    填空题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

    正确答案: 0
    解析:
    取基本单位向量组为ε1,ε2,…εn
    当m=n时,由对任意B都有AB=0,则对B=(ε1,ε2,…εn)=En也成立,即AE=0,故A=0.
    当m>n时,取B=(ε1,ε2,…εn,B1)=(En,B1),则由AB=A(En,B1)=0,知AEn=0,故A=0.

  • 第24题:

    填空题
    A、B都是n阶矩阵,且A≠0,AB=0,则|B|=____。

    正确答案: 0
    解析:
    由AB=0,知矩阵B的列向量是方程组AX()0()的解,则r(A)+r(B)≤n;又A≠0,故r(A)≠0,知r(B)<n,所以|B|=0。