函数f(x)在[a,b]上连续是f(x)在该区间上可积的()A.必要条件,但非充分条件 B.充分条件,但非必要条件 C.充分必要条件 D.非充分条件,亦非必要条件

题目
函数f(x)在[a,b]上连续是f(x)在该区间上可积的()

A.必要条件,但非充分条件
B.充分条件,但非必要条件
C.充分必要条件
D.非充分条件,亦非必要条件

相似考题
更多“函数f(x)在[a,b]上连续是f(x)在该区间上可积的()”相关问题
  • 第1题:

    设函数f(x)在区间[a,b]上连续,则下列结论中哪个不正确?

    D.f(x)在[a,b]上是可积的


    答案:A
    解析:
    提示:f(x)在[a,b]上连续,

  • 第2题:

    函数f(x)在区间[a,b]上连续是它在该区间上可积的(  ).

    A.充分条件
    B.必要条件
    C.充要条件
    D.无关条件

    答案:C
    解析:
    连续函数一定有原函数,故函数f(x)在区间[a,b]上连续,那么它在该区间上可积.

  • 第3题:

    设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,


    答案:
    解析:

  • 第4题:

    设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为( ).《》( )


    答案:B
    解析:
    本题考查的知识点为定积分的几何意义.由定积分的几何意义可知应选B.常见的错误是选C.如果画个草图,则可以避免这类错误.

  • 第5题:

    函数f(x)在[a,b]上黎曼可积的必要条件是f(x)在[a,b]上( )。


    A.可微
    B.连续
    C.不连续点个数有限
    D.有界

    答案:D
    解析:
    本题主要考查积分的知识。若函数在区间[a,b]上(黎曼)可积,则在[a,b]上必有界(可积的必要条件)。D项正确。

    A项:因为在一元函数中,可微一定连续,且连续一定可积,但反之不成立。与题干不符,排除。

    B、C项:可积的充分条件有以下3个:①函数在闭区间上连续;②函数在闭区间上有界且只有有限个间断点;③函数在闭区间上单调。与题干不符,排除。

  • 第6题:

    设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。

    A.f(x)在(a,b)上必有最大值

    B.f(x)在(a,b)上必一致连续

    C.f(x)在(a,b)上必有

    D.f(x)在(a,b)上必连续

    答案:D
    解析:
    本题主要考查连续函数的特点。f(x)为开区间(a,b)上的可导函数,则可能出现极值,不一定存在最大值,当函数为分段函数时,不一定有界,故A、C两项错误。可导的函数一定连续,但连续的函数不一定可导,故D项正确。只有f(x)为闭区间[a,b]上的可导函数时才符合一致连续,故B项错误。

  • 第7题:

    如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为l的上、下半圆周,


    答案:C
    解析:

  • 第8题:

    奇函数f(x)在闭区间[-1,1]上可导,且f′(x)≤M(M为正常数),则必有( )《》( )

    A.f(x)≥M
    B.f(x)>M
    C.f(x)≤M
    D.f(x)<M

    答案:C
    解析:

  • 第9题:

    设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是奇函数时,下面结论正确的是()。

    • A、F(x)是偶函数
    • B、F(x)是奇函数
    • C、F(x)可能是奇函数,也可能是偶函数
    • D、F(x)是否为奇函数不能确定

    正确答案:A

  • 第10题:

    问答题
    设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

    正确答案:
    首先证明存在性。
    作辅助函数F(x)=f(x)-x,由题设00。
    根据连续函数介值定理,在(0,1)上至少存在一点ξ∈(0,1),使得F(ξ)=0。即f(ξ)-ξ=0。
    用反证法证明唯一性。
    设012<1,且f(x1)=x1,f(x2)=x2,即F(x1)=F(x2)=0。
    根据罗尔定理知,存在x0∈(x1,x2)⊂(0,1)使得F′(x0)=0,即f′(x0)=1,这与题目中f′(x)≠1相矛盾,故在(0,1)内有且仅有一个x,使得f(x)=x。
    解析: 暂无解析

  • 第11题:

    问答题
    设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

    正确答案:
    因为f(x)不恒为常数,且f(a)=f(b),故必存在一点c∈(a,b),满足f(c)≠f(a)=f(b)。
    若f(c)>f(a)=f(b),f(x)在[a,c]上满足拉格朗日中值定理,故至少存在一点ξ∈(a,c)⊂(a,b),使得f′(ξ)=[f(c)-f(a)]/(c-a)>0。
    若f(c)0。综上命题得证。
    解析: 暂无解析

  • 第12题:

    判断题
    若f(x)在[a,b]上可积,则f(x)在[a,b]上连续。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第13题:

    函数f(x)=x3在闭区间[-1,1]上的最大值为_______.


    答案:
    解析:


    也单调递增,故最大值在X=1处取得,即为f(1)=1.

  • 第14题:

    函数f(x)在区间[a,b]上连续,且x∈[a,b],则下列导数为零的是(  ).



    答案:B
    解析:

  • 第15题:

    (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.


    答案:
    解析:

  • 第16题:

    设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。

    A.f(x)在[a,b]上有最大值
    B.f(x)在[a,b]上一致连续
    C.f(x)在[a,b]上可积
    D.f(x)在[a,b]上可导

    答案:D
    解析:
    本题主要考查连续函数的特点。f(x)为[a,b]上的连续函数,则f(x)具有有界性,因此A、B、C三项都正确。可导的函数一定连续,但连续的函数不一定可导,所以D项错误。

  • 第17题:

    若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上( )。

    A.连续
    B.单调
    C.可导
    D.有界

    答案:D
    解析:

  • 第18题:

    已知函数f(x)在闭区间[a,b].上连续,且f(a).f(b)<0,请用二分法证明f(x)在(a,b)内至少有一个零点。


    答案:
    解析:


  • 第19题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
    A. f'(x)>0,f''(x)>0 B. f(x) 0
    C. f'(x)>0,f''(x)


    答案:B
    解析:
    提示:f(x)在(-∞,+∞)上是偶函数,f'(x)在(-∞,+∞)在上是奇函数,f''(x)在(-∞,+∞)在上是偶函数,故应选B。

  • 第20题:

    若f(x)在[a,b]上可积,则f(x)在[a,b]上连续。


    正确答案:错误

  • 第21题:

    设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是偶函数时,下面结论正确的是()。

    • A、F(x)是偶函数
    • B、F(x)是奇函数
    • C、F(x)可能是奇函数,也可能是偶函数
    • D、F(x)是否是偶函数不能确定

    正确答案:D

  • 第22题:

    单选题
    奇函数f(x)在闭区间[-1,1]上可导,且|f′(x)|≤M(M为正常数),则必有(  )。
    A

    |f(x)|≥M

    B

    |f(x)|>M

    C

    |f(x)|≤M

    D

    |f(x)|<M


    正确答案: D
    解析:
    因为f(x)为奇函数,故f(0)=0。f(x)在[-1,1]上可导,由拉格朗日中值定理知|f(x)|=|f(x)-f(0)|=|f′(ξ)|·|x-0|≤M·1。故对∀x∈[-1,1],|f(x)|≤M。故应选(C)。

  • 第23题:

    单选题
    设P(x)是在区间[α,b]上的y=f(x)川的分段线性插值函数,以下条件中不是P(x)必须满足的条件为( )。
    A

    P(x)在[a,b]上连续

    B

    P(Xk)=Yk

    C

    P(x)在[α,b]上可导

    D

    P(x)在各子区间上是线性函数


    正确答案: C
    解析: 暂无解析