更多“一个袋子里有10个小球,其中4个白球,6个黑球,无放回地每次抽取1个,则第二次取到白球的概率是多少?( ) ”相关问题
  • 第1题:

    有白球和黑球各3个且白球和黑球中各有两个球分别印有1、2两个号码。现将这6个球放入袋子里,充分搅匀后有放回地每次摸取一个球,则前两次恰好摸到同编号的异色球的概率为( )。


    答案:D
    解析:
    第一次取到有编号的球的概率为,假设取到白色1号球,则第二次必须 取到黑色1号球,其概率为。因此前两次恰好摸到同编号的异色球的概率为。。

  • 第2题:

    盒中有4个白球6个红球,无放回地每次抽取1个,则第二次取到白球的概率是


    A. 2/15
    B. 4/15
    C. 2/5
    D. 3/5

    答案:C
    解析:
    解题指导: 初步学习过概率的考生可能选择用条件概率去做。方法如下:第一次取到白球,第二次取到白球;(4/10)×3/9=12/90。第一次取到黑球,第二次取到白球。(6/10)×4/9=24/90。12/90+24/90=36/90=2/5。故答案为C。

  • 第3题:

    设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为_______.


    答案:
    解析:
    设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),  


      

  • 第4题:

    一个布袋中装有大小相同的3个白球、4个红球和2个黑球,每次从袋中摸出一球不再放回。问恰好在第3次取得黑球的概率是多少?


    答案:A
    解析:

  • 第5题:

    有白球和黑球各3个且白球和黑球中各有两个球分别印有1、2两个号码。现将这6个球放入袋子里,充分搅匀后有放回地每次摸取一个球,则前两次恰好摸到同编号的异色球的概率为( )。
    A. 4/9 B. 4/15 C. 2/9 D.1/9


    答案:D
    解析:
    D [解析]第一次取到有编号的球的概率为2/3,假设取到白色1号球,则第二次必须取到黑色1号球,其概率为1/6。因此前两次恰好摸到同编号的异色球的概率为2/3 X 1/6 = 1/9。

  • 第6题:

    一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。每次取出1个球,求最多取到3个白球的概率。


    答案:
    解析:

  • 第7题:

    袋子中有70个红球,30个黑球,从袋子中连续摸球两次,每次摸一个球,而且是不放回的摸球:

    (1)求两次摸球均为红球的概率。

    (2)若第一次摸到红球,求第二次摸到黑球的概率。


    答案:
    解析:
    本题主要考查求解随机事件的概率方法。

    (1)利用概率近似等于频率,根据相互独立性,可求解两次摸球都是红球的概率。

    (2)由于第一次摸到红球,从剩余的99个球中摸一个黑球,共有30种可能。

  • 第8题:

    袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是().

    • A、3/5
    • B、3/4
    • C、1/2
    • D、3/10

    正确答案:A

  • 第9题:

    设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是()


    正确答案:16/25

  • 第10题:

    单选题
    一个袋子里有10个小球,其中4个白球,6个黑球,无放回地每次抽取1个,则第二次取到白球的概率是多少?(  )
    A

    2/15

    B

    4/15

    C

    1/5

    D

    2/5


    正确答案: D
    解析:
    可分成两种情况:①第一次取到白球,第二次也取到白球的概率是:4/10×3/9=12/90;②第一次取到黑球,第二次取到白球的概率是:6/10×4/9=24/90,即第二次取到白球的概率为24/90+12/90=2/5。

  • 第11题:

    一个袋子里放有10个小球(其中4个白球,6个黑球),无放回地每次抽取1个,则第二次取到白球的概率是( )

    A. 2/15
    B. 4/15
    C. 1/5
    D. 2/5

    答案:D
    解析:
    解题指导: 第一次取到白球,第二次取到白球的机率为4/10*3/9=2/15 ;第一次取到黑球,第二次取到白球的机率为6/10*4/9=4/15 。可知,第二次取到白球的机率为4/15+2/15=2/5,故答案为D。

  • 第12题:

    一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.
      (1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.


    答案:
    解析:
    【解】(1)设A1={一次性抽取4个球,其中2个红球2个白球),则
    (2)设A2={逐个抽取4个球,取后不放回,其中2个红球2个白球},则

    (3)设A3={逐个抽取4个球,取后放回,其中2个红球2个白球},则

  • 第13题:

    袋中有a个黑球和b个白球,一个一个地取球,求第k次取到黑球的概率(1≤k≤a+b).


    答案:
    解析:
    方法一基本事件数n=(a+b)!,设Ak={第k次取到黑球),则有利样本点数为a(a+b-1)!,所以

    方法二把所有的球看成不同对象,取k次的基本事件数为,第k次取到黑球所包含的事件数为,则

  • 第14题:

    一个袋子里面有10个球,包括红球、白球和黑球。已知从袋中任意摸一个球,得到黑球 的概率是2/5,从袋中任意摸两个球,至少有一个是白球的概率是7/9,问袋子里有多少个红球?

    a.l b.2 c.3 d.4


    答案:A
    解析:

  • 第15题:

    一个袋子里有8个黑球,8个白球,随机不放回连续取球5次,每次取出1个球,求最多取到3个白球的概率. .?


    答案:
    解析:

  • 第16题:

    袋子中有70个红球,30个黑球,从袋子中连续摸球两次,每次摸一个球,且第一次摸出的球,不放回袋中:
    (1)求两次摸球均为红球的概率:
    (2)若第一次摸到红球,求第二次摸到黑球的概率。


    答案:
    解析:
    平面π的法向量为n=(3,-1,2);

  • 第17题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第18题:

    一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率是80/81,则袋中白球的个数是()。


    正确答案:4

  • 第19题:

    袋中有大小相同的黑球7只,白球3只,每次从中任取一只,有放回抽取,记首次抽到黑球时抽取的次数为X,则P{X=10}=()。


    正确答案:0.39*0.7

  • 第20题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析