参考答案和解析
答案:
解析:
(1)证明:易知在△APD中,,AD=2,满足勾股定理,故PD⊥AP。SA⊥底面ABCD,则SA⊥PD。PD同时垂直于平面SAP内的两条相交直线,PD⊥平面SAP。 (2)

更多“如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P是BC边的中点,AD=2,SA=AB=1。 ”相关问题
  • 第1题:

    如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.


    答案:
    解析:
    解:∵四边形ABCD和四边形DEFG均为矩形,
    ∴∠DAF=∠DAB=90°,∠G=90°,DG=EF.
    ∵EF=6,DH=5,∴GH=DG-DH=EF-DH=6-5=1
    在Rt△ADH中,AD=4,DH=5,

  • 第2题:

    若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD一定是( )。

    A.对角线相互垂直的四边形
    B.矩形
    C.对角线相等的四边形
    D.菱形

    答案:A
    解析:
    对角线相互垂直的四边形顺次连接各边中点所得四边形是矩形,对角线相等的四边形顺次连接各边中点所得四边形是菱形。

  • 第3题:

    如图,在矩形ABCD中,AB=5,BC=12,将矩形ABCD沿对角线对折放在桌面上,折叠后所成的图形覆盖桌面的面积是


    答案:
    解析:

    解析:

  • 第4题:

    如图所示,矩形ABCD的面积为1,E、F、G、H分别为四条边的中点,FI的长度是IE的两倍,问阴影部分的面积为多少?




    答案:B
    解析:
    解题指导: 作辅助线。连接FG、EH。那么平行四边形EFGH的面积为矩形ABCD的一半,三角形GIH的面积又是平行四边形EFGH面积的一半,所以因应面积为1/4。故答案为B。

  • 第5题:

    如图,ABCD为矩形,AB=4,BC=3,边CD在直线L上,将矩形ABCD沿直线L作无滑动翻转,当点A第一次翻转到点A1位置时,点A经过的路线长为:



    A7π
    B6π
    C3π
    D3π/2


    答案:B
    解析:

  • 第6题:

    一块种植花卉的矩形土地如图所示,AD边长是AB的2倍,E为CD边的中点,甲、乙、丙、丁、戊区域分别种植白花、红花、黄花、紫花、白花。问种植白花的面积占矩形土地面积的:



    答案:C
    解析:
    赋值丙面积为1;则甲面积为4(相似图形,面积比等于边长平方比);乙和丁面积为2(等高情况下,三角形面积比等于底边长比);戊的面积与丙丁面积之和相等,面积为3;总面积为12,其中种白花的面积为7,因此占比为7/12。正确答案为C。

  • 第7题:

    如图,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8, AB∥DE,求△DEC的周长。


    答案:
    解析:
    15

  • 第8题:

    (10分)如图,四棱锥P-ABCD的底面为正方形,侧棱PD⊥底面ABCD,点E为棱PA的中点,PD=AD=1。
    (1)求证:PC∥平面BDE:
    (2)求三棱锥B-PDE的体积。


    答案:
    解析:
    (1)如图所示,连接AC,AC与BD交于点M,连接EM。因为底面ABCD是正方形,所以M为AC中点,又因为E为PA中点,所以

  • 第9题:

    如图,在一张矩形纸片ABCD中,AB=4,BC=8。点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点日处,点D落在G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时, 。以上结论中,你认为正确的有( )个。

    A.1
    B.2
    C.3
    D.4

    答案:C
    解析:

  • 第10题:

    如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90o,E是CD的中点。
    (1)证明:CD⊥平面PAE;
    (2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。


    答案:
    解析:



  • 第11题:

    矩形信号u(t+1)-u(t-1)的傅里叶变换为()

    • A、4Sa(ω)
    • B、2Sa(ω)
    • C、2Sa(2ω)
    • D、4Sa(2ω)

    正确答案:B

  • 第12题:

    判断题
    正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为30°。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第13题:

    如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.

    (1)求证:AB=BC;
    (2)当BE⊥AD于E时,试证明:BE=AE+CD.


    答案:
    解析:



  • 第14题:

    如图,平面四边形ABCD中,AB=2,BC=4,CD=5,DA=3,
    (1)若∠B与∠D互补,求AC2的值;
    (2)求平面四边形ABCD面积的最大值。


    答案:
    解析:

  • 第15题:

    如图,平行四边形ABCD,∠ADC的角平分线DE交BC于E,且AD=14,DC=9,则BE/EC的值为()。

    A.1/3
    B.4/9
    C.5/9
    D.2/3

    答案:C
    解析:
    AD∥BC,则∠ADE=∠DEC,又∠ADE=∠CDE,所以△CDE为等腰三角形,EC=CD=9,

  • 第16题:

    如图所示,矩形ABCD的面积为1,E、F、G、H分别为四条边的A 中点,FI的长度是IE的两倍,问阴影部分的面积为多 少?( )



    答案:B
    解析:
    这个题目需要做辅助线,连接FG、EH。
    因为E、F、G、H分别为四条边的中点,则平行四边形EFGH的面积是矩形ABCD面积的 1/2,而三角形IGH的面积是平行四边EFGH面积的1/2,所以阴影部分的面积为1/4。

  • 第17题:

    如图,正方体ABCD-A1B1C1D1的棱长为1cm,则三棱锥C-AB1D1的体积是:


    答案:A
    解析:

  • 第18题:

    如图7,在四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,则应添加的条件是__________(添加一个条件即可)。


    答案:
    解析:

  • 第19题:

    如图,已知四棱锥P-ABCD底面ABCD为矩形,侧棱PA⊥ABCD,AB=AP=21/2AD=2,E,F分别为PC,AB的中点。
    (I)证明:EF∥面PAD。
    (II)求三棱锥B-PFC的体积。


    答案:
    解析:

  • 第20题:

    如图,平行四边形ABCD,∠ADC的角平分线DE交BC于E,且AD=14,DC=9,




    答案:C
    解析:

  • 第21题:

    已知四棱锥P-ABCD底面为直角梯形,AB平行于DC,∠DAB=90°,PA垂直于底面ABCD,PA=AD=DC=



    AB=1,M为PB中点。
    (1)求证:面PAD⊥面PCD;
    (2)求面AMC与面BMC所成二面角的余弦值。


    答案:
    解析:
    (1)∵PA⊥面ABCD,CD⊥AD, ∴由三垂线定理,得CD⊥PD。
    因而,CD与面PAD内两条相交直线AD,PD都垂直,
    ∴CD⊥面PAD。
    又CD面PCD,∴面PAD⊥面PCD。
    (2)作AN⊥CM,垂足为N,连结BN。
    在Rt△PAB中,∵M是斜边PB中点,
    ∴AM=MB.

  • 第22题:

    正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为30°。


    正确答案:正确

  • 第23题:

    铰链四杆机构ABCD,如果以BC为机架(静件),当机构为双曲柄机构时,各杆的长度可为()。

    • A、AB=130 BC=150 CD=175 AD=200
    • B、AB=150 BC=130 CD=165 AD=200
    • C、AB=175 BC=130 CD=185 AD=200
    • D、AB=200 BC=150 CD=165 AD=130

    正确答案:C