甲和乙在长400米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行.则第一次相遇的位置距离出发点有l50米的路程;如两人同时从同一点出发同向而行,跑得快的人第一次追上另一人时跑了(  )米。A.600 B.800 C.1000 D.1200

题目
甲和乙在长400米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行.则第一次相遇的位置距离出发点有l50米的路程;如两人同时从同一点出发同向而行,跑得快的人第一次追上另一人时跑了(  )米。

A.600
B.800
C.1000
D.1200

相似考题
更多“甲和乙在长400米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行.则第一次相遇的位置距离出发点有l50米的路程;如两人同时从同一点出发同向而行,跑得快的人第一次追上另一人时跑了(  )米。”相关问题
  • 第1题:

    甲、乙两人同时从相距30千米的两地出发,相向而行。甲每小时走3.5千米,乙每小时走2.5千米。与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了( )千米。

    A.20

    B.22

    C.25

    D.26


    正确答案:C
     转换一个角度思考:当甲、乙相会时,甲、乙和狗走路的时间都是一样的。

  • 第2题:

    甲、乙两人都以不变的速度在环形路上跑步,如果同时同地出发,相向而行,每隔2min相遇一次;如果同向而行,每隔6min相遇一次,已知甲比乙跑得快,甲乙二人每分钟各跑多少圈?

  • 第3题:

    跑马场一周之长为1080米。甲、乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分后,甲追上了乙。如果甲每分减少50米,乙每分增加30米,从同一地点同时背向而行,则经过3分后两人相遇。原来甲、乙两人每分各行多少米?( )

    A.200 180

    B.360 240

    C.240 200

    D.240 180


    正确答案:A

  • 第4题:

    环形跑道的周长为400米,甲乙两人骑车同时从同一地点出发,匀速相向而行,16秒后甲乙相遇。相遇后,乙立即调头,6分40秒后甲第一次追上乙,问甲追上乙的地点距原来的起点多少米?

    A. 8
    B. 20
    C. 180
    D. 192

    答案:D
    解析:

  • 第5题:

    甲、乙两人同时从同一地点出发沿同一环形跑道进行健身锻炼,甲跑步,乙走路。若甲追上乙所需时间是两人相向而行相遇所需时间的3倍,则甲、乙的速度之比是:

    A.3︰1
    B.5︰2
    C.2︰1
    D.3︰2

    答案:C
    解析:

  • 第6题:

    一个正方形跑道边长为20米,甲和乙从跑道上的不同位置同时出发,匀速沿逆时针跑步,已知两人出发的位置之间直线距离为20米,甲以2米/秒的速度跑6秒到达某个顶点后,又跑了不到10秒正好到达乙出发的位置,此时乙正好第二次跑到顶点位置。问以下哪个描述是正确的?( )

    A.甲出发后不到2分钟第一次追上乙
    B.甲出发后超过2分钟第一次追上乙
    C.乙出发后不到2分钟第一次追上甲
    D.乙出发后超过2分钟第一次追上甲

    答案:A
    解析:
    本题属于行程问题。
    由甲以2米/秒的速度跑6秒到达某个顶点,画出图示。如图所示:

    甲初始位置在E点,EB=6×2=12米,由题意又跑了不到10秒正好到达乙出发的位置,所以画出示意图乙出发点在F点,且EF=20。由勾股定理可求得BF=16。甲到达乙的出发点共用时(12+16)÷2=14秒。又因为此时乙正好第二次跑到顶点位置,即跑到了D点,所以乙的速度为(4+20)÷14=12/7。甲的速度大于乙的速度,所以甲出发后,追上乙需要的时间为(12+16)÷(2-12/7)=98s。A符合题意。
    因此,选择A选项。

  • 第7题:

    甲乙两人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端。如果他们同时出发,并在甲跑完60米时第一次相遇,乙跑完一圈还差80米时两人第二次相遇,求跑道的长是多少米?()

    A. 200
    B. 400
    C. 800
    D. 1600

    答案:A
    解析:
    由于甲在离A地60米的地方与乙相遇,那么在他们再次相遇的时候甲又走了60米,甲乙再一次相遇在离A地80米处。从A到第一次相遇地点的距离,第一次相遇地点道第二次相遇地点的距离,从A地到第二次相遇地点的距离,这三段距离路程之和刚好是圆形跑道的长度,可见圆形跑道的长度是60+60+80=200米。故答案为A。

  • 第8题:

    跑马场周长为1080米。甲、乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分钟后,甲追上了乙。如果甲每分钟减少50米,乙每分钟增加30米,从同一地点同时背向而行,则经过3 分钟后两人相遇。原来甲、乙两人每分钟各行多少米?( )
    A. 200 180 B. 360 240 C. 240 200 D. 240 180


    答案:A
    解析:
    ①现在甲、乙每分钟共行:1080/3=360(米)。
    ②设甲现在每分钟行x米,则原来每分钟行(x+50)米;乙现在每分钟行(360-x)米,原来每分钟行 (360-x-30)米。列方程得
    (x+ 50)X54-(360-x- 30) X 54 = 1080,解得x= 150。
    甲原来每分钟行150 + 50 = 200(米);乙原来每分钟行360-150 - 30 = 180(米)。故本题正确答案为A。

  • 第9题:

    跑马场一周长为1080米。甲、乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分钟后,甲追上了乙。如果甲每分钟减少50米,乙每分钟增加30米,从同一地点同时背向而行,则经过3 分钟后两人相遇。原来甲、乙两人每分钟各行多少米?( )
    A. 200 180 B. 360 240 C. 240 200 D. 240 180


    答案:A
    解析:
    ①现在甲、乙每分钟共行:1080/3 = 360(米)。
    ②设甲现在每分钟行x米,则原来每分钟行(x+50)米;乙现在每分钟行(360-x)米,原来每分钟行(360-x-30)米。列方程得
    (x+50) X 54-(360-x-30) X 54=1080,解得x=150。
    甲原来每分钟行150 + 50 = 200(米);乙原来每分钟行360-150-30=180(米)。故本题正确答案为A。

  • 第10题:

    甲、乙两名运动员在400米的环形跑道上练习跑步,甲出发1分钟后乙同向出发,乙出发2分钟后第一次追上甲,又过了8分钟,乙第二次追上甲,此时乙比甲多跑了250米,问两人出发地相隔多少米()

    • A、200
    • B、150
    • C、100
    • D、50

    正确答案:B

  • 第11题:

    单选题
    一条圆形跑道长500米,甲、乙两人从不同起点同时出发,均沿顺时针方向匀速跑步。已知甲跑了600米后第一次追上乙,此后甲加速20%继续前进,又跑了1200米后第二次追上乙。问甲出发后多少米第一次到达乙的出发点?(  )
    A

    180

    B

    150

    C

    120

    D

    100


    正确答案: A
    解析:
    赋值甲的速度为100米/分,第一次追及,甲跑了600米,用时为6分;第二次追及,甲加速20%,即速度为120米/分,又跑了1200米,用时为10分。行程问题追及公式为:S=vt,从第一次追及开始,到第二次追及时,两人的路程差为1圈,即500=(120-v)×10,解得v=70米/分。分析第一次追及过程可知,甲比乙多走的距离即为甲出发点到乙出发点距离,S=vt=(100-70)×6=180米。故正确答案为A。

  • 第12题:

    单选题
    一个长方形的跑道,宽50米,长100米,甲乙两人在跑道上跑步,若两人同时同地背向出发,经30秒后相遇,若两人同时同地同向出发,经过75秒钟后,甲追上乙。现在两人在同一地点顺时针跑步,乙提前1分钟出发,问再经过多少秒甲才能追上乙?()
    A

    35

    B

    40

    C

    45

    D

    50


    正确答案: A
    解析: 暂无解析

  • 第13题:

    周长为400米的圆形跑道上, 有相距100米的A、B两点, 甲乙两人分别从A、B两点同时相背而跑, 两人相遇后, 乙即转身与甲同向而跑步, 当甲跑到A时, 乙恰好跑到B。如果以后甲、乙跑的速度方向都不变,那么甲追上乙时,甲从出发开始,共跑了( )米。

    A.600

    B.800

    C.900

    D.1000


    正确答案:D
    13.D【解析】乙从相遇点C跑回B点时,甲从C过B到A,他比乙多跑了100米,乙从B到C时, 甲从A到C, 说明A到C比B到C多100米, 跑道周长400米, 所以8到C是100米,A到C是200米,甲跑200米,比乙多100米。甲追上乙要多跑300=400—100(米),所以甲要跑200X 3=600(米),加上开始跑的一圈,甲共跑600+400=1000(米)。

  • 第14题:

    小方、小程两人相距6km,两人同时出发相向而行,1h相遇;同时出发同向而行,小方3h可追上小程。两人的平均速度各是多少?

  • 第15题:

    甲、乙两人从环形跑道的A点同时出发背向而行,6分钟后两人第一次相遇,相遇后两人的速度各增加10米每分钟,5分钟后两人第二次相遇,问环形跑道的长度为多少米()

    A、12
    B、15
    C、18
    D、21

    答案:A
    解析:
    本题考查相遇追及。设两人速度之和为v,环形跑道的长度为S,则S=6v=5×(v+10+10),解得S=600。故本题答案为A选项。????
    【知识点】相遇追及

  • 第16题:

    如下图所示,AB两点是圆形体育场直径的两端,两人从AB点同时出发,沿环形跑道相向匀速而行,他们在距A点弧形距离80米处的C点第一次相遇,接着又在距B点弧形距离60米处的D点第二次相遇,问这个圆形体育场的周长是多少米?


    A.240
    B.300
    C.360
    D.420

    答案:C
    解析:

  • 第17题:

    甲、乙同学在学校湖边环形小路上跑步,他们从同一起点出发相向而行,出发10 分钟后两人第一次相遇,出发20 分钟后第二次相遇,第一次相遇20 分钟后甲第一次跑回起点。已知环形小路长450 米,试问第二次相遇时甲跑的距离?( )。

    A.500 米
    B.400 米
    C.300 米
    D.450 米

    答案:C
    解析:
    已知环形小路长450 米,甲用了30 分钟跑完一圈,第一次相遇用了10 分钟,已知第二次相遇用时20 分钟,则甲走的路程=450×2/3=300 米,故选C。

  • 第18题:

    甲乙两人从P,Q两地同时出发相向匀速而行,5小时后于M点相遇。若其他条件不变,甲每小时多行4千米,乙速度不变,则相遇地点距M点6千米;若甲速度不变,乙每小时多行4千米,则相遇地点距M点12千米,则甲乙两人最初的速度之比为:
    A 2:1
    B 2:3
    C 5:8
    D 4:3


    答案:A
    解析:

  • 第19题:

    甲和乙在长400米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行,则第一次相遇的位置距离出发点有150米的路程;如两人同时从同一点出发同向而行,问跑得快的人第一次追上另一人时跑了多少米?( )

    A. 600
    B. 800
    C. 1000
    D. 1200

    答案:C
    解析:
    行程问题。相遇地点距离出发点150米的距离,则另外一个人走了250米,所走的快的人每走250米就会比慢的人多走100米,如果同向运动,则想要快的追上慢的就要正好扣圈多走400米,则走的快的要步行1000米的距离才能追上。

  • 第20题:

    有一个400米环形跑道,甲、乙两人同时从同一地点同方向出发,甲以0.8米/秒的速度步行,乙以2.4米/秒的速度跑步,乙在第2次追上甲时用了( )秒

    A.200
    B.210
    C.230
    D.250
    E.500

    答案:E
    解析:
    乙第2次追上甲时,乙比甲多跑了2圈,即多跑了800米,故所用时间为800/(2.4-0.8)=500(秒)

  • 第21题:

    甲、乙两位长跑爱好者沿着社区花园环路慢跑,如两人同时、同向,从同一点A出发,且甲跑9米的时间乙只能跑7米,则当甲恰好在A点第二次追及乙时,乙共沿在园环路跑了多少圈?( )
    A. 14 B. 15
    C. 16 D. 17


    答案:A
    解析:
    由甲跑9米的时间乙只能跑7米可知,甲乙二人速度比为9 : 7,又无论在A点第几次相遇,甲乙二人均沿环路跑了整数圈,因为二人跑步所用时间相同,所以二人所跑圈数之比就是二人速度之比,即甲跑的圈数必是9的倍数,乙跑的圈数必是7的倍数。选项中只有A项是7的倍数,故本题正确答案为A项。

  • 第22题:

    甲乙两人在环湖小路上匀速行驶,且绕行方向不变,19时,甲从A点,乙从B点同时出发相向而行。19时25分,两人相遇;19时45分,甲到达B点;20点5分,两人再次相遇,乙环湖一周需要多长时间()。

    • A、72
    • B、81
    • C、90
    • D、100

    正确答案:C

  • 第23题:

    单选题
    甲每秒跑3米,乙每秒跑2米,丙每秒跑4米,三人沿600米的环形跑道从同一点同时同向跑步,经过()秒三人又同时从出发点出发。
    A

    12

    B

    600

    C

    300

    D

    无法确定


    正确答案: B
    解析: 暂无解析