参考答案和解析
答案:D
解析:


而f(0)=a,所以a=emk 。@##
更多“,则a为何值时,f(x)在x=0点连续? ”相关问题
  • 第1题:

    以下四个命题中,正确的是( )

    A.f′(x)在(0,1)内连续,则f′(x)在(0,1)内有界
    B.f(x)在(0,1)内连续,则f(x)在(0,1)内有界
    C.f′(x)在(0,1)内连续,则f(x)在(0,1)内有界
    D.f(x)在(0,1)内连续,则f′(x)在(0,1)内有界

    答案:C
    解析:

  • 第2题:

    设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。

    A.(x-a)[f(x)-f(a)]≥0
    B.(x-a)[f(x)-f(a)]≤0
    C.
    D.

    答案:C
    解析:

  • 第3题:

    设f(x)=(x-a)φ(x),其中φ(x)在x=a处连续,则f´(a)等于( ).

    A.aφ(a)
    B.-aφ(a)
    C.-φ(a)
    D.φ(a)

    答案:D
    解析:

  • 第4题:

    设函数当定义f(0)为何值时,则f(x)在x=0处连续?
    A. e2 B. e C. e-2 D. e-1/2


    答案:C
    解析:
    提示:利用函数在一点连续的定义,e-2,
    定义f(0)=e-2时,f(x)在x=0处连续。

  • 第5题:

    设函数要使f(x)在点x=1处连续,则a的值应是:
    A.-2 B.-1 C.0 D.1


    答案:D
    解析:
    提示:利用函数在一点连续的定义,

  • 第6题:

    设函数,要使f(x)在x=0处连续,则a的值是:

    A.0
    B. 1
    C.-1
    D.λ

    答案:A
    解析:

    所以a=0。

  • 第7题:

    设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有( )。
    A. g[f(x)]在x= x0处有极大值 B.g[f(x)]在x=x0处有极小值C.g[f(x)]在x=x0处有最小值 D. g[f(x)]在x=x0处既无极值也无最小值


    答案:B
    解析:
    提示:由于f(x)在x= x0处有极大值,所以f(x)在x= x0左侧附近单调递增,右侧附近单调递减,g(f(x))在x= x0左侧附近单调递减,右侧附近单调递增。

  • 第8题:

    若f(x)在[a,b]上可积,则f(x)在[a,b]上连续。


    正确答案:错误

  • 第9题:

    设f(x)在(-a,a)是连续的偶函数,且当0()

    • A、f(0)是f(x)在(-a,A.的极大值,但不是最大值
    • B、B.f(0)是f(x)在(-a,的最小值
    • C、C.f(0)足f(x)在(-a,的极大值,也是最大值
    • D、f(0)是曲线y=f(x)的拐点的纵坐标

    正确答案:C

  • 第10题:

    下列结论不正确的是()。

    • A、y=f(x)在点x0处可微,则f(x)在点x0处连续
    • B、y=f(x)在点x0处可微,则f(x)在点x0处可导
    • C、y=f(x)在点x0处连续,则f(x)在点x0处可微
    • D、y=f(x)在点x0处可导,则f(x)在点x0处连续

    正确答案:C

  • 第11题:

    单选题
    设f′(x0)=f″(x0)=0,f‴(x0)>0,且f(x)在x0点的某邻域内有三阶连续导数,则下列选项正确的是(  )。
    A

    f′(x0)是f′(x)的极大值

    B

    f(x0)是f(x)的极大值

    C

    f(x0)是f(x)的极小值

    D

    (x0,f(x0))是曲线y=f(x)的拐点


    正确答案: D
    解析:
    已知f‴(x0)>0,则f″(x)在x0点的某邻域内单调增加,又由f″(x0)=0,则在x0点的某邻域内f″(x0)与f″(x0)符号相反,故(x0,f(x0))是曲线y=f(x)的拐点。

  • 第12题:

    单选题
    设f(x)在(-a,a)是连续的偶函数,且当0()
    A

    f(0)是f(x)在(-a,A.的极大值,但不是最大值

    B

    B.f(0)是f(x)在(-a,的最小值

    C

    C.f(0)足f(x)在(-a,的极大值,也是最大值

    D

    f(0)是曲线y=f(x)的拐点的纵坐标


    正确答案: B
    解析: 暂无解析

  • 第13题:

    下列命题正确的是().

    A若|f(x)|在x=a处连续,则f(x)在x=a处连续
    B若f(x)在x=a处连续,则|f(x)|在x=a处连续
    C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续
    D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续


    答案:B
    解析:

  • 第14题:

    设函数,要使f(x)在点x=1处连续,则a的值应是:

    A.-2
    B.-1
    C.0
    D.1

    答案:D
    解析:
    提示:利用函数在一点连续的定义,通过计算的值确定a值。

  • 第15题:

    设函数,要使f(x)在x=0处连续,则a的值是:
    A.0 B. 1 C.-1 D.λ


    答案:A
    解析:
    提示:分段函数在分界点连续,
    所以a=0

  • 第16题:

    若函数f (x)在点x0间断,g(x)在点x0连续,则f (x)g(x)在点x0:
    (A)间断 (B)连续 (C)第一类间断(D)可能间断可能连续


    答案:D
    解析:
    解:选D。
    这道题可以用举例子的方法来判断。
    f (x)g(x)=0在点处间断。

  • 第17题:

    (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.


    答案:
    解析:

  • 第18题:

    设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。

    A.f(x)在[a,b]上有最大值
    B.f(x)在[a,b]上一致连续
    C.f(x)在[a,b]上可积
    D.f(x)在[a,b]上可导

    答案:D
    解析:
    本题主要考查连续函数的特点。f(x)为[a,b]上的连续函数,则f(x)具有有界性,因此A、B、C三项都正确。可导的函数一定连续,但连续的函数不一定可导,所以D项错误。

  • 第19题:

    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.


    正确答案:错误

  • 第20题:

    下列结论不正确的是()。

    • A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续
    • B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导
    • C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微
    • D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

    正确答案:C

  • 第21题:

    设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。

    • A、g[f(x)]在x=x0处有极大值
    • B、g[f(x)]在x=x0处有极小值
    • C、g[f(x)]在x=x0处有最小值
    • D、g[f(x)]在x=x0既无极值也无最小值

    正确答案:B

  • 第22题:

    单选题
    以下关于二元函数的连续性的说法正确是(  )。
    A

    若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

    B

    若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

    C

    若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

    D

    以上说法都不对


    正确答案: C
    解析:
    根据二元函数f(x,y)在(x0,y0)出连续的定义可知B项正确。

  • 第23题:

    单选题
    设f(x)在x=0处满足f′(0)=f″(0)=…=f(n)(0),f(n+1)(0)>0,则(  )。
    A

    当n为偶数时,x=0是f(x)的极大值点

    B

    当n为偶数时,x=0是f(x)的极小值点

    C

    当n为奇数时,x=0是f(x)的极大值点

    D

    当n为奇数时,x=0是f(x)的极小值点


    正确答案: C
    解析:
    此题可用举例法判断。当n=1时(即n为奇数),f′(0)=0,f″(0)>0。由f″(0)>0知f′(x)在x=0处单调增加。又f′(0)=0,x<0时f′(x)<0;x>0时f′(x)>0。因此f(x)在x=0点处取得极小值。
    当n=2时(即n为偶数),f′(0)=f″(0)=0,f‴(0)>0。由f‴(0)>0知,f″(x)在x=0处单调增加。因f″(0)=0,故f′(x)在x=0附近先减小后增加。f′(0)=0,故f(x)在x=0点处单调。因此x=0既不是f(x)的极大值也不是它的极小值。综上所述D项正确。