参考答案和解析
答案:C
解析:
点斜式求出直线方程。
更多“过点M0(-1,1)且与曲线2ex-2cosy-1 = 0上点(0,π/3)的切线相垂直的直线方程是: ”相关问题
  • 第1题:

    设方程y´´-4y´+3y=0的某一积分曲线,它在点(0,2)处与直线x-y+2=0相切,则该积分曲线的方程是( ).

    A.
    B.
    C.
    D.

    答案:B
    解析:

  • 第2题:

    已知平面π过点(1,1,0)、(0,0,1)、(0,1,1),则与平面π垂直且过点(1,1,1)的直线的对称方程为 ( )。



    答案:B
    解析:
    平面π的法向量所求直线的方向向量为i+k,故应选B。@##

  • 第3题:

    曲线y=lnx在点(1,0)处的切线方程为.


    答案:
    解析:
    【答案】Y=x-1【考情点拨】本题考查了切线方程的知识点.

  • 第4题:

    曲线y=lnx上与直线垂直的切线方程为


    答案:
    解析:

  • 第5题:

    过点(0,1)且与直线x+y+1=0垂直的直线方程为()

    A.y=x
    B.y=2x+1
    C.y=x+1
    D.y=x-1

    答案:C
    解析:

  • 第6题:

    已知平面π过点M1(1,1,0),M2(0,0,1),M3(0,1,1),则与平面π垂直且过点(1,1,1)的直线的对称方程为:



    答案:A
    解析:
    提示 求出过M1,M2,M3三点平面的法线向量。



    @##

  • 第7题:

    试求通过点Mo(一1,0,4),垂直于平面Ⅱ:3x一4y-10=0,且与直线
    平行的平面方程。


    答案:
    解析:
    平面Ⅱ的法向量m=(3-4,1),直线Z的方向向量l=(3,l,2),所以所求平面的法向

  • 第8题:

    已知平面π过点(1,1,0)、(0,0,1), (0,1,1),则与平面π垂直且过点(1,1,1)的直线的对称式方程为( )。


    答案:B
    解析:
    正确答案是B。
    提示:平面π的法向量,所求直线的方向向量为i+k ,故应选B。

  • 第9题:

    填空题
    曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为____。

    正确答案: y=-exsin2x
    解析:
    所求曲线方程满足方程y″-2y′+5y=0,其特征方程为r2-2r+5=0,解得r12=1±2i。故方程y″-2y′+5y=0的通解为y=ex(c1cos2x+c2sin2x)。又因为所求曲线经过原点,且在原点处的切线与直线2x+y=6平行,故y(0)=0,y′(0)=-2,将其代入y=ex(c1cos2x+c2sin2x)得c1=0,c2=-1。故所求曲线方程为y=-exsin2x。

  • 第10题:

    单选题
    过点(1,2)且与直线2x+y-3=0平行的直线方程为(  ).
    A

    2x+y-5=0

    B

    2y-x-3=0

    C

    2x+y-4=0

    D

    2x-y=0


    正确答案: B
    解析:
    设和2x+y-3=0平行的直线方程为2x+y+c=0,将(1,2)代人,则有2×1+2+c=0,得c=-4.

  • 第11题:

    问答题
    求过点M(-1,0,1)且垂直于直线(x-2)/3=(y+1)/(-4)=z/1又与直线(x+1)/1=(y-3)/1=z/2相交的直线方程。

    正确答案:
    过点M(-1,0,1)且垂直于直线(x-2)/3=(y+1)/(-4)=z/1的平面方程为3x-4y+z+2=0。该平面与直线(x+1)/1=(y-3)/1=z/2的交点为(12,16,26),则该交点与点M(-1,0,1)形成的直线方程为(x+1)/13=y/16=(z-1)/25,即为所求。
    解析: 暂无解析

  • 第12题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    x-y=0

    B

    x+y=0

    C

    -x-y=0

    D

    -x+y=0


    正确答案: C
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第13题:

    过点(2,-3,1)且平行于向量a=(2,-1,3)和b=(-1,1,-2)的平面方程是( ).

    A.-x+y+z-4=0
    B.x-y-z-4=0
    C.x+y+z=0
    D.x+y-z+2=0

    答案:B
    解析:
    A × B =(-1,1,1),排除 C 、 D ,过点(2,-3,1)=> B

  • 第14题:

    设曲线y=^e1?x2与直线x=-1的交点为P,则曲线在点P处的切线方程是(  )

    A.2x-y+2=0
    B.2x+y+1=0
    C.2x+y-3=0
    D.2x-y+3=0

    答案:D
    解析:


    @##

  • 第15题:

    曲线y=x3-x在点(1,0)处的切线方程y=______.


    答案:
    解析:
    填2(x-1).因为y'=3x2-1,y'(1)=2,则切线方程为y=2(x-1).

  • 第16题:

    过点(2,0,-1)且垂直于xOy坐标面的直线方程是(  )。


    答案:C
    解析:
    垂直于xOy面的直线的方向向量为(0,0,1),由于过点(2,0,-1),则直线的点向式方程为:(x-2)/0=y/0=(z+1)/1。

  • 第17题:

    过直线3x+2y+1=0与2x-3y+5=0的交点,且垂直于直线L:6x-2y+5=0的直线方程是(  )

    A.x-3y-2=0
    B.x+3y-2=0
    C.x-3y+2=0
    D.x+3y+2=0

    答案:B
    解析:

  • 第18题:

    若曲线y=x4的一条切线I与直线x+4y-8=0垂直,求切线I的方程。


    答案:
    解析:

  • 第19题:

    若曲线y=χ4的一条切线I与直线χ+4y-8=0垂直,求切线I的方程。


    答案:
    解析:

  • 第20题:

    过点(2,-3,1)且平行于向量a=(2,-1,3)和b=(-1,1,-2)的平面方程是().

    • A、-x+y+z-4=0
    • B、x-y-z-4=0
    • C、x+y+z=0
    • D、x+y-z+2=0

    正确答案:B

  • 第21题:

    单选题
    过点(2,1)且与直线y=0垂直的直线方程为(  ).
    A

    x=2

    B

    x=1

    C

    y=2

    D

    x=1


    正确答案: D
    解析:
    直线y=0即为x轴,所求直线要与x轴垂直,即为x=2.

  • 第22题:

    单选题
    若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是(  ).
    A

    曲线C的方程是f(x,y)=0

    B

    以方程f(x,y)=0的解为坐标的点都在曲线C上

    C

    方程f(x,y)=0的曲线是C

    D

    方程f(x,y)=0表示的曲线不一定是C


    正确答案: C
    解析:
    AC两项,说曲线C是方程f(x,y)=0的曲线,方程f(x,y)=0是曲线C的方程必须同时具备定义中的两个条件:①曲线上的点的坐标都是这个方程的解;②以这个方程的解为坐标的点都在这条曲线上.此题仅给出定义中的条件之一;B项,与题干所给条件无关.

  • 第23题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    -x-y=0

    B

    x-y-1=0

    C

    x-y=0

    D

    x+y=0


    正确答案: A
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。