参考答案和解析
答案:
解析:
由SMC=0.6Q -10可得STC=0.3Q2一10Q+ FC,又因为Q=20时的总成本STC= 260,代入可得FC= 340,从而STC =0.3Q2 -10Q +340。 由总收益函数TR= 38Q可得MR =38。 由利润最大化的条件MR= SMC可得Q=80,利润尺=1580 .
更多“某完全竞争厂商的短期边际成本函数为SMC=0.6Q-10,总收益函数为TR =38Q.而且已知产量Q=20时的总成本STC=260. 求:该厂商利润最大化时的产量和利润。”相关问题
  • 第1题:

    设完全竞争市场的需求函数为Qd=2000-10P,供给函数为Qs=500+20P,厂商的短期成本函数STC=Q3-4Q2+15Q+50.求该厂商的均衡产量和最大利润。


    参考答案:厂商均衡时,有SMC=MR,完全竞争条件下,厂商的MR=P
    由Qs=500=20P,Qd=2000-10P
    联合后解得P=60,将P=50=MR代入SMC=MR,即3Q2-8Q+15=50
    解得后均衡产量Q=5
    于是最大利润∏=TR-TC
    =50×5-(53-4×52+15×5=50)
    =100

  • 第2题:

    假定某厂商短期生产的边际成本函数为SMC(Q)=3Q2-8Q+100,且已知当产量Q=10时的总成本STC=2400,求相应的STC函数、SAC函数和AVC函数。


    参考答案:


    切入点:对总成本函数求导数,得到边际成本函数,反过来对边际成本函数积分,会得到总成本函数。本题给了SMC,积分后得到总成本函数,再根据给的其他条件确定固定成本的数值。最后几个函数就出来了。

  • 第3题:

    假定某厂商的边际成本函数为SMC=3Q2-30Q+100,而且生产10单位产量的总成本为1000, 求:(1)固定成本的值。 (2)总成本函数、总可变成本函数、平均成本函数、平均可变成本函数。


    答案:
    解析:
    (1)根据边际成本函数和总成本函数之间的关系,由边际成本函数SMC= 3Q2—30Q +100积分可得总成本函数,即有:

  • 第4题:

    假定某垄断厂商生产一种产品,其总成本函数为TC=0.SQ2 +10Q +5,市场的反需求函数为P=70 -2Q: (1)求该厂商实现利润最大化时的产量、产品价格和利润量。 (2)如果要求该垄断厂商遵从完全竞争原则,那么,该厂商实现利润最大化时的产量、产品价格和利润量又是多少? (3)试比较(1)和(2)的结果,你可以得出什么结论?


    答案:
    解析:
    (1)厂商边际成本函数为MC=Q+10, 边际收益函数为MR =70 -4Q。 根据利润最大化原则MR =MC, 可知Q =12,P=46,利润π=PQ - TC= 355。 (2)根据完全竞争原则可知P=MC, 可得Q =20,P=30, 此时利润π= PQ - TC= 195。 (3)比较(1)和(2)可知,垄断条件下的利润更大,价格更高,但产量却比较低。

  • 第5题:

    假定某寡头厂商面临一条弯折的需求曲线,产量在0~30单位范围内时需求函数为P=60-0.3Q,产量超过30单位时需求函数为P=66 -0.50;该厂商的短期总成本函数为STC=0.005 Q3-0. 2Q2 +36Q +200。 (1)求该寡头厂商利润最大化的均衡产量和均衡价格。 (2)假定该厂商成本增加,导致短期总成本函数变为STC =0.005Q3 -0.2Q2 +50Q +200,求该寡头厂商利润最大化的均衡产量和均衡价格。 (3)对以上(1)和(2)的结果作出解释。



    答案:
    解析:

    边际成本函数为MC=0.015Q2 -0.4Q+36。 在Q =30时,边际收益的上限和下限分别为42、36。故在产量为30单位时,边际收益曲线间断部分的范围为36—42。 由厂商的边际成本函数可知,当Q =30时,有MC=37.5。 根据厂商的最大化利润原则,由于MC= 37.5处于边际收益曲线间断部分的范围MR=MC为36—42之内,符合利润最大化原则,所以厂商的产量和价格分别为Q=30、P=51。 (2)厂商边际成本函数为MC =0.015Q2-0. 4Q +50。 当Q =30时,MC= 51.5。 超出了边际收益曲线间断部分的范围36~ 42,此时根据厂商利润最大化原则MR= MC,得Q =20,P=54。 (3)由(1)结果可知,只要在Q=30时MC值处于边际收益曲线间断部分36—42范围之内,寡头厂商的产量和价格总是为Q= 30、P=51,这就是弯折曲线模型所解释的寡头市场的价格刚性现象。 只有边际成本超出了边际收益曲线间断部分36—42的范围,寡头市场的均衡价格和均衡产量才会发生变化。

  • 第6题:

    已知某垄断厂商的短期总成本函数为STC =0. 6Q2+3Q +2,反需求函数为P=8 -0. 4Q: (1)求该厂商实现利润最大化时的产量、价格、收益和利润。 (2)求该厂商实现收益最大化时的产量、价格、收益和利润。 (3)比较(1)和(2)的结果。


    答案:
    解析:

  • 第7题:

    假定某完全竞争厂商的短期总成本函数为STC=0.04Q3-0.4Q2+8Q +9,产品的价格P=12.求该厂商实现利润最大化时的产量、利润量和生产者剩余。


    答案:
    解析:

  • 第8题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。


    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)

  • 第9题:

    已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?


    正确答案:(1)由Q=6752-50P,则P=135-1/50Q,Л=TR-TC=PQ-TC=(135-1/50Q)Q-12000-0.0025Q2,当利润最大化时Л=135-1/25Q+0.05Q=0,解得Q=1500,P=105
    (2)最大利润Л=TR-TC=PQ-TC=89250

  • 第10题:

    问答题
    已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?

    正确答案: (1)由Q=6752-50P,则P=135-1/50Q,Л=TR-TC=PQ-TC=(135-1/50Q)Q-12000-0.0025Q2,当利润最大化时Л=135-1/25Q+0.05Q=0,解得Q=1500,P=105
    (2)最大利润Л=TR-TC=PQ-TC=89250
    解析: 暂无解析

  • 第11题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。

    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)
    解析: 暂无解析

  • 第12题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为:STC=0.1Q3-2Q2+15Q+10(1)当市场上产品价格为 55时厂商的短期均衡产量和利润;(2)当市场价格下降为多少时厂商必须停产?(3)求厂商的短期供给函数。

    正确答案:
    由短期成本函数可得厂商的短期边际成本函数为:SMC=0.3Q2-4Q+15。
    完全竞争厂商实现短期均衡时,有SMC=P,即0.3Q2-4Q+15=55,解得:Q=20。
    此时,利润为π=PQ-STC=55×20-(0.1×203-2×202+15×20+10)=790。
    即均衡产量为20,利润为790。
    解析: 暂无解析

  • 第13题:

    已知厂商面临的需求曲线是:Q=50-2P。(1)求厂商的边际收益函数。(2)若厂商的边际成本等于4,求厂商利润最大化的产量和价格。


    参考答案:

  • 第14题:

    垄断厂商的总收益函数为TR- 80Q-Q^2,总成本函数为TC- 20+6Q,则厂商利润最大化时()

    A.产量为37,价格为43,
    B.产量为43.价格为37
    C.产量为33,价格为47
    D.产量为47,价格为33

    答案:A
    解析:

  • 第15题:

    假定某厂商的需求函数为Q =100-P,平均成本函数为Ac=120/Q+2。 (1)求该厂商实现利润最大化时的产量、价格及利润量。 (2)如果政府对每单位产品征税8元,那么,该厂商实现利润最大化时的产量、价格及利润量又是多少?与(1)中的结果进行比较。


    答案:
    解析:
    (1)总成本函数为TC =120 +2Q, 构造利润函数π= PQ -rc, 即π=(100 -Q)Q- (120 +2Q)=- Q2 +98Q -120, dπ/dQ=-2Q+98=0 此时Q =49,P=51,利润π=2281。 (2)构造利润函数: π= PQ - TC - 8Q=-Q2+ 90Q - 120 dπ/dQ=2Q+90=0 此时Q =45,P=55,利润π=1905。 与(1)比较,(2)中的利润量较低,产量降低但价格上升。

  • 第16题:

    假定某厂商短期生产的边际成本函数SMC( Q)=3Q2-8Q +100,而且已知当产量Q=10时的总成本STC= 2400.求相应的STC函数、SAC函数和AVC函数


    答案:
    解析:

  • 第17题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC =0.1Q3- 2Q2+150 +10 . (1)求当市场上产品的价格为P=55时,厂商的短期均衡产量和利润。 (2)当市场价格下降为多少时,厂商必须停产? (3)求厂商的短期供给函数。


    答案:
    解析:

  • 第18题:

    假设某完全竞争行业有200个相同的企业,企业的短期成本函数为TC =0. 2Q2+Q+15,市场需求函数为Qp= 2475 - 95P,厂商的长期总成本函数为LTC=0.1Q3-1. 2Q2+11.1Q,求: (1)市场短期均衡价格、产量及厂商利润。 (2)市场长期均衡价格与产量。 (3)说明是否会有厂商退出经营。


    答案:
    解析:
    (1)先求单个企业的供给函数:

    故A VC的最小值为1。 而MC的最小值也为1,故只有价格大于等于1,厂商才会供给商品。 此时单个企业的供给函数为P= MC =0.4Q +l,即Q=2.SP -2.5。 市场的供给函数为Qs=200Q =500P -500(P≥1),由QD=QS可得P=5。 市场均衡产量为2000单位,每个厂商产量为10单位。 单个厂商利润为5 x10 - (0.2 x102 +10+15) =5。

    将Q=6代入LAC,得IAC =7.5。 由长期均衡条件可得P=7. 5. (3)将P=7.5代入需求函数可得市场需求量为1762.5,而200个厂商的供给量为1200,再加上厂商短期利润为正,长期利润为O,所以没有厂商退出经营。

  • 第19题:

    假定某完全竞争行业内单个厂商的短期总成本函数为STC=Q3—8Q2+22Q+90,产品的价格为P=34, (1)求单个厂商实现利润最大化时的产量和利润量: (2)如果市场供求变化使得产品价格下降为P=22,那么,厂商的盈亏状况将如何?如果亏损,亏损额是多少?(保留整数部分) (3)在(2)的情况下,厂商是否还会继续生产?为什么?


    答案:
    解析:

  • 第20题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-3Q2+10Q+200,SMC=0.3Q2-6Q+10。当市场上产品价格P=100时,求厂商的短期均衡产量和利润。


    正确答案: P=SMC=MR
    0.3Q2-6Q+10
    短期均衡产量Q=30
    STC=500
    利润100*30-500=2500

  • 第21题:

    问答题
    计算题: 已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求: (1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润; (2)当市场上价格下降为多少时,厂商必须停产; (3)厂商的短期供给函数

    正确答案: (1)根据MC=MR=P
    MC=dSTC/dQ=0.3Q2-4Q+15=55=P
    解得Q=20
    利润=TR-STC=55*20-(0.1*203-2*202+15*20+10)=790
    (2)停业点为AVC的最低点
    AVC=TVC/Q=0.1Q2-2Q+15
    当Q=10时AVC最小且AVC=5所以P=5时厂商必须停产
    (3)短期供给函数即SMC函数且大于最低AVC对应产量以上的区间
    SMC=dSTC/dQ=0.3Q2-4Q+15
    所以短期供函数为0.3Q2-4Q+15(Q≥10)
    解析: 暂无解析

  • 第22题:

    问答题
    已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求:  (1)劳动的投入函数L=L(Q);  (2)总成本函数、平均成本函数和边际成本函数;  (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?

    正确答案: (1)因为K=50,则Q=0.5L1/3K2/3=0.5L1/3502/3,L=0.0032Q3,此即为劳动的投入函数。
    (2)总成本函数为:TC=PLL+PKK=0.016Q3+500
    平均成本函数为:ATC=TC/Q=0.016Q2+500/Q
    边际成本函数为:MC=dTC/dQ=0.048Q2
    (3)当产品的价格P=100时,厂商的边际收益MR=P=100,由厂商获得最大利润的条件MR=MC,即100=0.048Q2,解得Q≈45.64。
    此时利润:π=PQ-TC=100×45.64-0.016×45.643-500≈2543。
    解析: 暂无解析

  • 第23题:

    问答题
    已知垄断厂商面临的需求曲线是Q=50-3P。  (1)求厂商的边际收益函数。  (2)若厂商的边际成本等于4,求厂商利润最大化的产量和价格。

    正确答案:
    (1)据题意,垄断厂商的反需求函数为:P=50/3-Q/3,所以,厂商的总收益函数为:
    TR=PQ=50Q/3-Q2/3
    则其边际收益函数为:MR=dTR/dQ=50/3-2Q/3。
    (2)由题可知,厂商的边际成本MC=4。根据厂商利润最大化的一般原则,有:MR=MC,即:
    50/3-2Q/3=4
    解得:Q=19。
    将Q=19代入反需求函数P=50/3-Q/3,得:P=50/3-19/3=31/3。
    即厂商利润最大化的产量为Q=19,价格为P=31/3。
    解析: 暂无解析