设生产函数为柯布道格拉斯函数Q=L^(1/3)K^(2/3),己知劳动力和资本的价格分别是w=1和r =2, (1)该生产函数代表了哪种类型的规模收益? (2)设企业的生产成本为3000,求两种要素的投入数量与总产量。 (3)设企业的生产产量为800,求两种要素的投入数量与企业所需付出的成本。

题目
设生产函数为柯布道格拉斯函数Q=L^(1/3)K^(2/3),己知劳动力和资本的价格分别是w=1和r =2, (1)该生产函数代表了哪种类型的规模收益? (2)设企业的生产成本为3000,求两种要素的投入数量与总产量。 (3)设企业的生产产量为800,求两种要素的投入数量与企业所需付出的成本。


相似考题
更多“设生产函数为柯布道格拉斯函数Q=L^(1/3)K^(2/3),己知劳动力和资本的价格分别是w=1和r =2, (1)该生产函数代表了哪种类型的规模收益? (2)设企业的生产成本为3000,求两种要素的投入数量与总产量。 (3)设企业的生产产量为800,求两种要素的投入数量与企业所需付出的成本。”相关问题
  • 第1题:

    假设在一个市场上有两家企业,该市场的逆需求函数为P=4一罢,企业1的成本函数为 c1= q1,企业2的成本函数为C2 =2q2,P为价格,Q为两个企业的总产量,q为每个企业的产量。 (1)假设两个企业可以组成一个卡特尔,求垄断价格及每个企业的产量。 (2)试证明:卡特尔不是一个纳什均衡。 (3)假设两个企业进行产量竞争,求古诺均衡下的价格和每个企业的产量。


    答案:
    解析:
    (1)由已知可得企业1和企业2的边际成本分别为:MCl =1,MC2=2。因为MC2> MC1,所以,为使卡特尔总利润最大化,应当使企业1生产,企业2不生产。因此,Q—qi,q2 =0。 卡特尔的利润函数为:

    利润最大化的一阶条件为:

    解得:q1=6。 将q1=6和q2=O代入需求函数,可得P=5/2 (2)企业1的成本函数为c1=q1,企业2的成本函数为C2=2q2,可知卡特尔定价下P>MC2> Mc1,两个企业都有降低价格获得最大利润的冲动。因此,卡特尔不是一个纳什均衡。 (3)若两厂商进行古诺竞争,则寡头企业1的利润函数为:

    其利润最大化的一阶条件为:

    得企业1的反应函数为: q1=6-0. 5q2 ① 同理可得企业2的反应函数为: q2 =4-0. 5q1 ② 联立两个寡头厂商的反应函数①②可得:q.=16/3,q2 =4/3。从而得: P= 7/3,π1=64/9,π2=4/9

  • 第2题:

    假设某厂商的短期生产函数为Q=35L+8L2-L3 求:(1)该企业的平均产量函数和边际产量函数。 (2)如果企业使用的生产要素的数量为/=6,是否处于短期生产的合理区间?为什么?


    答案:
    解析:
    (1)由Q=35L+ 8L2一L2可得: AP= Q/L=35+8L-L2,MP= dQ/d/= 35 +16L-3L2. (2)当L=6时,AP =47,MP =23,由于MP <AP,则处于短期生产的合理区间。

  • 第3题:

    假定一个竞争性厂商,其生产函数为Q=f(L,K)=AL^αK^β,生产要素L和K的价格分别为w和r。 (1)试求在K为不变投入时厂商的短期成本函数。 (2)求厂商的长期成本函数,并讨论不同的规模报酬对平均成本曲线形状的影响。


    答案:
    解析:

  • 第4题:

    已知某厂商的固定投入比例的生产函数为Q=min{2L,3K} (1)令PL =1、PK =3,求厂商为了生产120单位产量所使用的K、L值以及最小成本。如果要素价格变化为PL =4、PK =2,厂商为了生产120单位产量所使用的K、L值以及最小成本又是多少?请予以比较与说明。 (2)令PL =4、PK =3,求C=180时的K、L值以及最大产量。


    答案:
    解析:
    (1)由题意可知,当固定投入比例生产要素为最佳组合时,Q=2L=3K。 Q =120时,1= 60,K=40。 当PL =1、PK =3时,成本C=PL·L+PK·K=180; 当PL =4、PK =2时,成本C=PL·L+PK·K=320。 比较两个结果可知,第二种价格的成本更高,因为投入比例固定,L投入比K投入数量多,L价格越高成本越高。 (2)由题意可知,C=PL.L+PK·K。 C= 180,PL=4,PK =3,即4L+3K= 1800 (1) 又由(1)得Q=2L=3K, (2) 联立可得L=30,K=20,此时Q=60。

  • 第5题:

    已知某企业的生产函数为

    劳动的价格w=2,资本的价格r=1。求:


    答案:
    解析:

  • 第6题:

    假设某完全竞争行业有200个相同的企业,企业的短期成本函数为TC =0. 2Q2+Q+15,市场需求函数为Qp= 2475 - 95P,厂商的长期总成本函数为LTC=0.1Q3-1. 2Q2+11.1Q,求: (1)市场短期均衡价格、产量及厂商利润。 (2)市场长期均衡价格与产量。 (3)说明是否会有厂商退出经营。


    答案:
    解析:
    (1)先求单个企业的供给函数:

    故A VC的最小值为1。 而MC的最小值也为1,故只有价格大于等于1,厂商才会供给商品。 此时单个企业的供给函数为P= MC =0.4Q +l,即Q=2.SP -2.5。 市场的供给函数为Qs=200Q =500P -500(P≥1),由QD=QS可得P=5。 市场均衡产量为2000单位,每个厂商产量为10单位。 单个厂商利润为5 x10 - (0.2 x102 +10+15) =5。

    将Q=6代入LAC,得IAC =7.5。 由长期均衡条件可得P=7. 5. (3)将P=7.5代入需求函数可得市场需求量为1762.5,而200个厂商的供给量为1200,再加上厂商短期利润为正,长期利润为O,所以没有厂商退出经营。

  • 第7题:

    考虑柯布一道格拉斯生产函数

    其中K袁示资本存量,L表示劳动量,要素价格分别是r和w。 (1)求短期成本函数STC(r,w,Y)(短期生产假定资本存量保持不变)。 (2)求长期成本函数LTC(r,w,Y)。 (3)讨论参数a、β的取值与规模报酬之间的关系。


    答案:
    解析:
    (1)厂商的短期总成本曲线是在保持r和w不变的前提下,根据k的 变化而得出的。 由题意可得:成本函数为C=wL+rK。当K-定时,最优状态为:

    (3)投入的增加导致产出相同比例的增加,这是规模报酬不变的情形;若产出增加比例小于投入增加比例,则是规模报酬递减的情形;如果产出增加的比例大于投入增加的比例,则是规模报酬递增的情形。 柯布一道格拉斯生产函数的规模报酬取决于系数a和口的值,即有:

    因此,a+β>l,柯布道格拉斯生产函数为规模报酬递增;口+J9—1,函数为规模报酬不变;a+β<1,函数为规模报酬递减。

  • 第8题:

    已知生产函数为Q= KL -0.5L2-0.32K2;其中,Q表示产量,K表示资本.L表示劳动,令式中K=10,求: (1)写出劳动的平均产量(APPL)函数和边际产量(MPPL)函数。 (2)分别计算当总产量、平均产量和边际产量达到极大值时厂商雇佣的劳动。 (3)求上述条件下厂商总产量、平均产量和边际产量的极大值。


    答案:
    解析:

  • 第9题:

    某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?
    (1)平均产量AP=TP/L= -0.1 L2 +6L+12 边际产量MP=(TP)’= - 0.3 L2+12L+12
    (2)企业应在平均产量递减,边际产量为正的生产阶段组织生产,因此雇用工人的数量也应在此范围<0,MP>0内。 对APL求导,得= - 0.2 L +6=0。 即L=30 
    当L=30时,APL取得最大值,L>30,APL开始递减。 令MPL= - 0.3L2+12L+12=0,得L=40.98
    所以,企业雇用工人的合理范围为30≤L≤41
    (3)利润π=PQ-WL=40(- 0.1 L3 +6L2 +12L)-480L = - 4 L3 +240L2 +480L-480L
    Π’=- 12L2+480L,当Π’=0时, L=0 (舍去) 或L=40.
    当L=40时, Π” <0,所以L=40,利润π最大。
    此时,产量Q= -0.1×403+6 × 402 +12 × 40 =3680

  • 第10题:

    某企业使用劳动L和资本K进行生产,长期生产函数为Q=20L+65K-0.5L2-0.5K2,每期总成本TC=2200元,要素价格w=20元,r=50元。求企业最大产量,以及L和K地投入量。


    正确答案:Q.20L+65K-0.5L2-0.5K2   TC=2200元, w=20元,r=50元
    MPL=dQ/dL=20-L, MPK=dQ/dK=65-K
    由MPL/MPK=w/r  得(20-L)/(65-K)=20/50 即  2K-5L=30   ①
    由Lw+Kr=2200  得  20L+50K=2200  ②由
    ①②得,L=10,K=40
    Q最大产量=20L+65K-0.5L2-0.5K2=20×10+65×40-0.5×100-0.5×40×40=1950

  • 第11题:

    问答题
    已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求:  (1)劳动的投入函数L=L(Q);  (2)总成本函数、平均成本函数和边际成本函数;  (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?

    正确答案: (1)因为K=50,则Q=0.5L1/3K2/3=0.5L1/3502/3,L=0.0032Q3,此即为劳动的投入函数。
    (2)总成本函数为:TC=PLL+PKK=0.016Q3+500
    平均成本函数为:ATC=TC/Q=0.016Q2+500/Q
    边际成本函数为:MC=dTC/dQ=0.048Q2
    (3)当产品的价格P=100时,厂商的边际收益MR=P=100,由厂商获得最大利润的条件MR=MC,即100=0.048Q2,解得Q≈45.64。
    此时利润:π=PQ-TC=100×45.64-0.016×45.643-500≈2543。
    解析: 暂无解析

  • 第12题:

    问答题
    已知生产函数为Q=min(L,4K)。试求:(1)当产量Q=32时,L与K值分别是多少?(2)如果生产要素的价格分别为PL=2,Pk=5,则生产100单位产量时的最小成本是多少?

    正确答案:
    (1)由于生产函数是固定要素比例生产函数,则厂商的最有要素组合应满足:
    L=4K=32
    所以,L=32,K=8。
    (2)根据(1)中的分析,同理可得:L=4K=100,即得:L=100,K=25。
    所以生产100单位产量时的最小成本的最小成本为:
    C=PLL+PKK=2×100+5×25=325
    解析: 暂无解析

  • 第13题:

    已知生产函数为Q =f(K,L)=KL -0. 5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,若K =10,求: (1)写出劳动的平均产量和边际产量函数。 (2)计算当总产量达到极大值时企业雇佣的劳动人数。


    答案:
    解析:
    代入K =10,有Q=10L -0. 5L2—32。 (1)劳动的平均产量函数为APL= 10 -0.5L-32/L.劳动的边际产量函数为MP1=10 -L。 (2)要使总产量达到极大值,由MPL =0,可得L=10.

  • 第14题:

    考虑一般性的柯布-道格拉斯生产函数:q=Ax1^α×x2^β(A>0,α>0,β>0),其中q为产量;x1、x2分别为两种要素投入。考虑比较静态的情形,当要素投入对价格ω1,ω2变化而产量保持不变时,生产者会使用相对便宜的要素替代相对贵的要素,试解出该生产函数的要素替代弹性。


    答案:
    解析:
    (1)替代弹性用来衡量生产要素投入比例变动对于生产要素边际技术替代率变动的敏感性程度。替代弹性(σ)表示如下:

    因此,柯布—道格拉斯生产函数的替代弹性恒为】。

  • 第15题:

    已知生产函数Q=min{2L,3K},求: (1)当产量Q=36时,L与K值分别是多少? (2)如果生产要素的价格分别为PL =2、PK =5,则生产480单位产量时的最小成本是多少?


    答案:
    解析:
    (1)由题意,Q=min( 2L,3K)表示该函数是一个固定投入比例的生产函数,所以,厂商进行生产时总有Q =2L=3K。当产量为36时,有L=18,K=12。 (2)由Q=2L=3K且Q=480,可得L=240,K=160。 又因为PL =2、PK =5,所以有C=PL·L+PK·K=2 x240+5 x160 =1280,即生产480单位产量的最小成本为1280。

  • 第16题:

    已知某垄断厂商的短期总成本函数为STC =0. 6Q2+3Q +2,反需求函数为P=8 -0. 4Q: (1)求该厂商实现利润最大化时的产量、价格、收益和利润。 (2)求该厂商实现收益最大化时的产量、价格、收益和利润。 (3)比较(1)和(2)的结果。


    答案:
    解析:

  • 第17题:

    已知某企业的生产函数为Q=,L^(2/3)K^(1/3),劳动的价格,w=2,资本的价格r =1:求 (1)当成本C=3000时,企业实现最大产量时的L、K和Q的均衡值。 (2)当产量Q=800时,企业实现最小成本时的L、K和C的均衡值:


    答案:
    解析:

  • 第18题:

    企业的生产函数为

    工资率为w,资本价格为r。求长期成本函数。


    答案:
    解析:

  • 第19题:

    完全竞争市场上,厂商生产要素为x1,x2,面对的是竞争性要素需求市场,两种要素的价格都为2,每个企业的固定成本为64。单个厂商的生产函数为

    消费者对该产品的需求函数为Q=280-5p,其中p为产品的市场价格 长期均衡时的单个企业产量和价格


    答案:
    解析:

  • 第20题:

    已知某完全竞争市场的需求函数为D= 6300 - 400P,短期市场供给函数为SS= 3000+150P;单个企业在LAC曲线最低点的价格为6,产量为50;单个企业的成本规模不变. (1)求市场的短期均衡价格和均衡产量。 (2)判断(1)中的市场是否同时处于长期均衡,求行业内的厂商数量: (3)如果市场的需求函数变为D’=8000 - 400P,短期供给函数为SS’= 4700 +150P,求市场的短期均衡价格和均衡产量。 (4)判断(3)中的市场是否同时处于长期均衡,并求行业内的厂商数量。 (5)判断该行业属于什么类型。 (6)需要新加入多少企业,才能提供由(1)到(3)所增加的行业总产量?


    答案:
    解析:
    (1)根据市场短期均衡的条件D=SS,有6300 - 400P= 3000 +150P,解得P=6。 以P=6代入市场需求函数,有Q=6300 - 400×6=3900。 所以,该市场短期均衡价格和均衡产量分别为P=6、Q=3900: (2)因为该市场短期均衡时的价格P=6,由题意可知,单个企业在LAC曲线最低点的价格也为6,所以,由此可以判断该市场也同时处于长期均衡。 由(1)可知市场长期均衡时的数量为Q=3900,由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为3900÷50= 78。 (3)根据市场短期均衡的条件D’=SS’,有8000 - 400P’=4700 +150P’,解得P’=6。 以P’ =6代入市场需求函数,有Q’= 8000 - 400×6=5600。 或者以P’=6代人市场短期供给函数,有Q’=4700 +150×6=5600。 所以,该市场在变化了的供求函数条件下的短期均衡价格和均衡产量分别为P’=6、Q’=5600。 (4)与(2)的分析相类似,在市场需求函数和短期供给函数变化之后,该市场短期均衡时的价格P=6,由题意可知,单个企业在LAC曲线最低点的价格也是6,所以,由此可以判断该市场的这一短期均衡同时也是长期均衡。 因为由(3)可知,供求函数变化以后的市场长期均衡时的产量Q’=5600,由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为5600÷50= 112。 (5)由以上分析和计算过程可知:在该市场供求函数发生变化前后的市场长期均衡时的均衡价格是不变的,均为P=6,而且单个企业在LAC曲线最低点的价格也是6。于是,我们可以判断该行业属于成本不变行业。以上(1)~(5)的分析与计算结果的部分内容如图6—6所示。

    (6)由(1)和(2)可知,(1)时的厂商数量为78;由(3)和(4)可知,(3)时的厂商数量为112。因此,由(1)到(3)所增加的厂商数量为112 - 78= 34:或者,也可以这样计算:由于从(1)到(3)市场长期均衡产量的增加量为AQ= 5600 - 3900=1700。由题意可知,单个企业长期均衡时的产量为Q=50,所以,为提供AQ =1700的新增产量,需要新加入的企业数量为1700÷50= 34。

  • 第21题:

    设某厂商品总产量函数为TPL=72L+15L2-L3,求: (1)当L=7时,边际产量MPL是多少? (2)L的投入量为多大时,边际产量MP将开始递减?


    正确答案:(1)TPL=72L+ 15L2- L3
    对TPL求导便可得 MPL=72+30L-3L2 ,所以当L=7时,MPL=72+30×7-3×72 =135
    (2)边际产量MPL达到最大之后开始递减,MPL最大时,其一阶导数为零,所以(MPL)’=30-6L=0,L=5

  • 第22题:

    已知某企业的生产函数为Q=50L^(3/5)K^(3/5)(Q为产量,L为劳动,K为资本),则()

    • A、生产函数为规模报酬递增
    • B、生产函数为规模报酬递减
    • C、生产函数为规模报酬不变
    • D、生产要素报酬递增
    • E、生产要素报酬递减

    正确答案:A,E

  • 第23题:

    问答题
    已知企业的生产函数为Q=F(L,K)=LK-0.5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,令K=10。试求劳动的平均产量函数(AP1)和边际产量函数(MP1)。

    正确答案:
    当K=10时,短期生产函数为:Q=-0.5L2+10L-32
    因而劳动的平均产量函数为:APL=Q/L=-0.5L+10-32/L
    劳动的边际产量函数为:MPL=dQ/dL=-L+10
    解析: 您好,非常感谢您的反馈,本题的答案已完善。平均产量函数应为:AP=-0.5L+10-32/L。再次感谢。