某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:假定商品x由一个具有规模报酬不变生产技术的垄断厂商提供,单位成本为0.4元。求产品定价、消费者剩余、生产者剩余。

题目
某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:假定商品x由一个具有规模报酬不变生产技术的垄断厂商提供,单位成本为0.4元。求产品定价、消费者剩余、生产者剩余。


相似考题
参考答案和解析
答案:
解析:
更多“某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:假定商品x由一个具有规模报酬不变生产技术的垄断厂商提供,单位成本为0.4元。求产品定价、消费者剩余、生产者剩余。”相关问题
  • 第1题:

    假定消费者A、B的效用函数分别为

    如果消费者A商品X的禀赋为

    y的禀赋为O;消费者B商品X的禀赋为0,y的禀赋为y。试推导A、B的交换契约曲线方程。


    答案:
    解析:

  • 第2题:

    假设两种商品X和Y,其中Y为正常商品,请用收入效应和替代效应描述:(1)当X为正常商品;(2)当X为劣等商品;(3)当X为吉芬商品时,X价格下降消费者对X和Y最佳配置的影响,请画图说明。


    答案:
    解析:
    (1)正常商品的替代效应和收入效应。 如图1-1所示

    作为正常商品,X价格下降,替代效应和收入效应都使得对X的需求增加。y最终需求量是增加还是减少不确定。 (2)劣等商品的替代效应和收入效应。 如图1—2所示

    作为劣等商品,X价格下降,替代效应使得对X的需求增加,收入效应使得对x的需求减少。由于替代效应大于收入效应,所以对X的需求增加。一般而言,y最终需求量增加。 (3)吉芬商品的替代效应和收入效应。 如图1-3所示

    作为吉芬商品,X价格下降,替代效应使得对X的需求增加,收入效应使得对的需求减少。由于替代效应小于收入效应,所以对X的需求减少,y最终需求量增加。

  • 第3题:

    在一个人(既是消费者又是生产者)的经济e={X,y,ω}中,商品1和商品2在消费和生产中分别满足下面的条件:X一{z∈R2 ▏x1≥2,x2≥0}Y={y∈R2▏y2≤2(-y1)2,y1≤0)。效用函数为U(x1,x2)-(x1-2)x2,初始资源禀赋为ω=(4,0)。 对于价格p=(p1,p2)∈R2++,写出生产者问题并求解最大化利润下的y1和y2。


    答案:
    解析:
    生产者问题可表述为:

    构造拉格朗日辅助函数: L=p1y1+p2 y2 +λ1(-y1)+λ2(2y12-y2) 根据K-T条件及经济学含义,得:

    解得:

  • 第4题:

    某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:写出该消费者对商品x的需求函数。


    答案:
    解析:
    为使效用最大化,则有MU/px=MU,y/py,可以得到:(1-x)/p=1,则x=1-p即为消费者对x的需求函数。

  • 第5题:

    如果消费者对商品X和商品Y的效用函数为U=XY,那么()。

    A.消费者对商品X的需求数量与商品Y的价格无关
    B.消费者对商品X的需求数量与商品Y的价格有关
    C.当商品X的价格变化时,消费者的价格消费曲线是一条水平线
    D.当商品X的价格变化时,消费者的价格一消费曲线是一条向上倾斜的直线

    答案:A,C
    解析:
    利用柯布一道格拉斯效用函数的特征可得商品x的需求函数为

    可以看出消费者对商品X的需求数量与商品Y的价格无关。当商品X的价格变化时,消费者不改变对Y的需求,因此消费者的价格一消费曲线是一条水平线。

  • 第6题:

    设某消费者的效用函数为柯布一道格拉斯类型的,即

    商品x和商品y的价格分别为

    消费者的收人为M,a和β为常数,且a+ β=1。 (1)求该消费者关于商品X和商品y的需求函数。 (2)证明当商品X和商品y的价格以及消费者的收入同时变动一个比例时,消费者对两商品的需求关系维持不变。 (3)证明消费者效用函数中的参数a和β分别为商品x和商品y的消费支出占消费者收入的份额。


    答案:
    解析:

  • 第7题:

    某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:若x由两个厂商供给,单个产品成本为0.4,两个厂商之间进行古诺竞争,求均衡时的市场定价、生产者剩余和消费者剩余


    答案:
    解析:

  • 第8题:

    小王消费两种商品,X和Y。他的效用函数为U(x,y)=2x+5y;x和y分别表示他在X和Y上的消费量,假设商品X的价格为4,商品Y的价格为15,小王的收入为150。现在假设小王可以选择加入一家俱乐部,若加入,则可以享受到购买商品Y的折扣,折扣之后的商品Y的价格10,试问小王愿意为加入该俱乐部最多支付多少元的入会费?()

    A.0
    B.30
    C.50
    D.75

    答案:A
    解析:

  • 第9题:

    假设XP和YP分别表示X和Y商品的价格,当边际替代率XYXYMRSP/P,消费者为达到最大效用,他将会()

    • A、增加X商品的购买,减少Y商品的购买
    • B、减少X商品的购买,增加Y商品的购买
    • C、同时增加或者减少X和Y商品的购买
    • D、对X和Y商品的购买数量不发生改变

    正确答案:B

  • 第10题:

    预算线绕着它与横轴的交点逆时针方向转动是因为(假定以横轴度量X的量,以纵轴度量Y的量):()

    • A、商品X的价格上升
    • B、商品Y的价格上升
    • C、消费者收入下降
    • D、商品X的价格不变,商品Y的价格上升

    正确答案:D

  • 第11题:

    假定有一位消费者只消费两种商品X和Y,如果Z的价格上涨,其它商品价格不变,商品Z的需求弹性为0.7,他消费Y的数量将增加。


    正确答案:错误

  • 第12题:

    问答题
    某消费者收入为120元,用于购买X和Y两种商品,X商品的价格PX=20元,Y品的价格PY=10元。所购买的X商品为3,Y商品为3时,是否在消费可能线上?它说明了什么?

    正确答案: 20×3+10×3=90(元)
    90元支出不足120元的预算,说明不在消费可能线上,而在线内。说明是可以实现的购买,但不是最大的数量组合。
    解析: 暂无解析

  • 第13题:

    某消费者消费X和Y两种商品所获得的效用函数为:U=XY+Y,预算约束为:PX X + PYY = I,求: 说明X和Y之间是替代品、互补品还是独立商品


    答案:
    解析:
    X与Y两种商品之间的需求交叉价格弹性为:

    也就是说随着商品X的价格上升,消费者将会增加对商品Y的购买。因此两种商品是替代品的关系。

  • 第14题:

    小华只消费两种商品X和y,她的收入为500美元,效用函数为U(z,y)=max{z,y),其中,z是商品X的消费量,y是商品Y的消费量。商品Y的价格为1,商品X的价格从1/3上升至2,则等价变化为( )。

    A.11111美元
    B.1566. 67美元
    C.1000美元
    D.333.33美元

    答案:D
    解析:
    由题意知,小华效用函数为u(x,y)=max{x,y},m=500,py=1,px=1/3,p'x =2,其效用最大化问题为:当px=1/3,py=1时,解得x=1 500,y=0,此时效用“(1 500,0) =max{1 500,0) =1 500。当p'x=2,py=1时,解得x=0,y=500,此时效用u(0,500) =max{0,500)=500。等价变化是以价格变化后的效用水平为基准,计算价格变化对消费者造成的货币损失。在原来的价格下,消费者要达到价格变化后的效用水平所需的货币量记为m',则有:u(3m',O)一max{ 3m',0}一3m'= 500解得:m'=500/3。等价变化为:EV=500/3一500≈一333. 33。

  • 第15题:

    某人的效用函数为

    收入为m,其中x和y的价格分别为p1,p2。 求出消费者均衡时,该人对x,y两商品的需求函数。


    答案:
    解析:

  • 第16题:

    某消费者消费X和Y两种商品所获得的效用函数为:U=XY+Y,预算约束为:PX X + PYY = I,求: X、Y的需求函数


    答案:
    解析:
    求解消费者效用最大化时要满足:

    通过构造拉格朗日辅助函数得:

    求得其一阶导数为并令其为0:

    得: X的需求函数为:

    Y的需求函数为:

  • 第17题:

    设某消费者的效用函数为柯布-道格拉斯类型的,即U=x^αy^β,商品x和商品y的价格分别为Px和Py,消费者收入为M,α和β为常数切α+β=1 (1)求该消费者关于商品x和商品y的需求函数。 (2)证明:当商品x和y的价格及消费者的收入均以相同的比例变化时,消费者对两商品的需求关系维持不变; (3)证明:该消费者效用函数中的参数α和β分别为商品x和商品y的消费支出占消费者收入的份额。


    答案:
    解析:

    综上,消费者效用函数中的参数α和β分别为商品x和商品y的消费支出占消费者收入的份额。

  • 第18题:

    某消费者的效用函数为U=(x1,x2)=x11/3x2/3,x1和x2分别为两种商品的消费量,消费者收入为100,两种商品现在价格分别为P1=1,P2=2,求: 计算第一种商品价格从1变化为2,要保持原有效应不变的收入补偿数额。


    答案:
    解析:

  • 第19题:

    某消费者的效用函数为u(x1.x2)一√五云,商品x1和x2的价格为P1和P2,收入为ya (1)假设商品x1和x2的价格为P1=l和P2=2,该消费者收入为y=100。求该消费者对两种商 品的需求量。 (2)若商品x1价格升至2,即此时P1=P2 =2,该消费者收入不变。求此价格变化对商品Xl产生的替代效应和收入效应。


    答案:
    解析:

  • 第20题:

    某消费者收入为120元,用于购买X和Y两种商品,X商品的价格PX=20元,Y品的价格PY=10元。所购买的X商品为3,Y商品为3时,是否在消费可能线上?它说明了什么?


    正确答案: 20×3+10×3=90(元)
    90元支出不足120元的预算,说明不在消费可能线上,而在线内。说明是可以实现的购买,但不是最大的数量组合。

  • 第21题:

    假设消费者张某对X和Y两种商品的效用函数为U=X2Y2,张某收入为500元,X和Y的价格分别为Px=2元,Py=5元,求:张某对X和Y两种商品的最佳组合。


    正确答案: MUx=2X*Y2,MUy=2Y*X2
    又因为MUx/Px=MUy/Py,Px=2元,Py=5元
    所以2X*Y2/2=2Y*X2/5
    得X=2.5Y
    又因为:M=PxX+PyY,M=500
    所以:X=50,Y=125

  • 第22题:

    假设Px和Py分别表示X和Y商品的价格,当边际替代率MRSxy大于Px/Py,消费者为达到最大效用,他将会()。

    • A、增加X商品的购买,减少Y商品的购买
    • B、减少X商品的购买,增加Y商品的购买
    • C、同时增加或者减少X和Y商品的购买
    • D、对X和Y商品的购买数量不发生改变

    正确答案:A

  • 第23题:

    计算题:假设消费者张某对X和Y两种商品的效用函数为U=X2Y2,张某收入为500元,X和Y的价格分别为PX=2元,PY=5元,求:张某对X和Y两种商品的最佳组合。


    正确答案:MUX=2XY2,MUY=2YX2
    又因为MUX/PX=MUY/PY,PX=2元,PX=5元
    所以:2XY2/2=2YX2/5
    得X=2.5Y
    又因为:M=PXX+PYY,M=500
    所以:X=50,Y=125