设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则A.AP{Y=-2X-1}=1 B.P{Y=2X-1}=1 C.P{Y=-2X+1}=1 D.P{Y=2X+1}=1

题目
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则



A.AP{Y=-2X-1}=1
B.P{Y=2X-1}=1
C.P{Y=-2X+1}=1
D.P{Y=2X+1}=1

相似考题
更多“设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则 ”相关问题
  • 第1题:

    设X,Y相互独立,且X~N(1,2),Y~N(0,1),求2=2X-Y+3的密度函数,


    答案:
    解析:
    【解】因为X,Y相互独立且都服从正态分布,所以X,Y的线性组合仍服从正态分布,即2=2X-Y+3服从正态分布,由E(Z)=2E(X)-E(Y)+3=5,D(Z)=4D(X)+D(Y)=9,则Z的密度函数为

  • 第2题:

    设随机变量X~N(0,σ^2),Y~N(0,4σ^2),且P(X≤1,y≤-2)=,则P(X>1,Y>-2)=_______.


    答案:
    解析:

  • 第3题:

    设常数a∈[0,1],随机变量X~U[0,1],y=|X-a|,则E(XY)=_______.


    答案:
    解析:

  • 第4题:

    设二维随机变量(X,Y)服从正态分布N(μ,μ;σ^2,σ^2;0),则E(XY^2)=________.


    答案:
    解析:

  • 第5题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第6题:

    设X,Y是相互独立的随机变量,X~N(2,σ2),Y~N(-3,σ2),且P{|2X+Y-1|≤8.7654}=0.95,则σ=()。


    正确答案:2

  • 第7题:

    设随机变量X与Y相互独立,且X~N(1,2),Y~N(0,1)。令Z=-Y+2X+3,则D(Z)=()。


    正确答案:9

  • 第8题:

    若随机变量X~N(3,9),Y~N(-1,5),且X与Y相互独立。设Z=X-2Y+2,则Z~()。


    正确答案:N(7,29)

  • 第9题:

    设X~N(0,1),Y=2X+1,则P{Y-1∣<2}=()


    正确答案:2Φ(1)-1或0.7

  • 第10题:

    设随机变量X~N(-3,1),Y~N(2,1),且X,Y相互独立,记Z=X-2Y+7,则Z~()。


    正确答案:N(0,5)

  • 第11题:

    设随机变量X~N(1,4),且P{Xa}=P{Xa},则a=()。


    正确答案:1

  • 第12题:

    单选题
    设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则(  )。
    A

    P{Y=-2X-1}=1

    B

    P{Y=2X-1}=1

    C

    P{Y=-2X+1}=1

    D

    P{Y=2X+1}=1


    正确答案: A
    解析:
    令Y=aX+b,因为X~N(0,1),Y~N(1,4),则E(Y)=aE(X)+b=1,得b=1,D(Y)=a2D(X)=4,则a=±2。
    又ρXY=1,则a>0,故a=2。故应选D。

  • 第13题:

    设随机变量X~N(0,1),且y=9X^2,则y的密度函数为_______.


    答案:
    解析:

  • 第14题:

    设X,Y相互独立,且X~B,Y~N(0,1),令U=max{X,Y},求P{1

    答案:
    解析:
    【解】P(U≤u)=P(max{X,Y}≤u)=P(X≤u,Y≤u)=P(X≤u)P(Y≤u),
    P(U≤1.96)=P(X≤1.96)P(Y≤1.96)=[P(X=0)+P(X=1)]P(Y≤1.96)

    P(U≤1)=P(X≤1)P(Y≤1)=×Ф(1)=0.4205,
    则P(1小于U≤1.96)=P(U≤1.96)-P(U≤1)=0.067.

  • 第15题:

    设随机变量X~N(1,2),Y~N(-1,2),Z~N(0,9)且随机变量X,Y,Z相互独立,已知a(X+Y)2+bZ2~χ2(n)(ab≠O),则a=_______,b=_______,Z=_______.


    答案:
    解析:
    由X~N(1,2),Y~N(-1,2),Z~N(0,9),得X+Y~N(0,4),且,故.

  • 第16题:

    设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_________.


    答案:
    解析:
    (X,Y)~N(1,0;1,1;0),所以X与Y相互独立,且X~N(1,1),Y~N(0,1)也就有(X-1)~N(0,1)与Y相互独立,再根据对称性:P{X-1<0}=P{X-1>0}=P(Y<0)=P{Y>0}=.不难求出P{XY-Y<0}的值.

  • 第17题:

    设随机变量X和Y都服从N(0,1)分布,则下列叙述中正确的是( )。


    答案:C
    解析:

  • 第18题:

    若随机变量X~N(1,4),Y~N(2,9),且X与Y相互独立。设Z=X-Y+3,则Z~()。


    正确答案:N(2,13)

  • 第19题:

    设随机变量X~N(0,1),Y=aX+b(a>0),则()

    • A、Y~N(0,1)
    • B、Y~N(b,a)
    • C、Y~N(b,a2
    • D、Y~N(a+b,a2

    正确答案:C

  • 第20题:

    设随机变量X与Y相互独立,且X~N(2,22),Y~N(-1,1),则P{|2X+3Y-1|≤9.8}=()。


    正确答案:0.95

  • 第21题:

    设随机变量X和Y相互独立,且X~N(0,1),Y~N(1,1),则()

    • A、P{X+Y≤0}=0.5
    • B、P{X+Y≤1}=0.5
    • C、P{X-Y≤0}=0.5
    • D、P{X-Y≤1}=0.5

    正确答案:B

  • 第22题:

    设随机变量X服从N(-1,4),则P{X+1<0}=()


    正确答案:0.5

  • 第23题:

    设随机变量X~N(1,4),则D(X)=()


    正确答案:4

  • 第24题:

    单选题
    设随机变量X~N(0,1),Y~N(0,4),且相关系数ρXY=1,则(  ).
    A

    P{Y=-2X-1}=1

    B

    P{Y=2X-1}=1

    C

    P{Y=-2X+1}=1

    D

    P{Y=2X+1}=1


    正确答案: B
    解析:
    令Y=aX+b,因为X~N(0,1),Y~N(1,4),则EY=aEX+b=1,得b=1,
    D(Y)=a2D2(X)=4,则a=±2.
    又ρXY=1,则a>0,故a=2.
    故应选D.