参考答案和解析
答案:A
解析:
更多“设随机变量X的概率密度f(x)满足f(1+x)=f(1-x),且= ”相关问题
  • 第1题:

    设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数a有( )。

    A.
    B.
    C.F(-a)=F(a)
    D.F(-a)=2F(a)-1

    答案:B
    解析:

  • 第2题:

    设f'(lnx)=1+x,则f(x)等于:


    答案:C
    解析:
    提示:设lnx=t,得f'(t)=1+et形式,写成f'(x)=1+ex,积分。

  • 第3题:

    若∫f(x)dx=F(x)+C,则∫xf(1-x^2)dx=(  )。

    A. F(1-x^2)+C
    B. -(1/2)F(1-x^2)+C
    C. (1/2)F(1-x^2)+C
    D. -(1/2)F(x)+C

    答案:B
    解析:
    ∫xf(1-x^2)dx=(-1/2)∫f(1-x^2)d(1-x^2)=(-1/2)F(1-x^2)+C
    这里C均表示常数。

  • 第4题:

    设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).


    答案:
    解析:
    【简解】本题是2003年数三的考题,考查一个离散型和一个连续型两个随机变量的函数的分布,随机变量的独立性等,
    先求分布函数

    由此得g(u)=0.3f(u-1)+0.7f(u-2).

  • 第5题:

    设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是



    A.Af1(x)f2(x)
    B.2f2(x)F1(x)
    C.f1(x)F2(x)
    D.f1(x)F2(x)+f2(x)f1(x)

    答案:D
    解析:

  • 第6题:

    设随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=1/2π


    答案:A
    解析:
    提示 (X,Y)~N(0,0,1,1,0),X~N(0,1),Y~N(0,1),E(X2+Y2) =E(X2)+E(Y2),E(X2)=D(X) + (E(X) )2

  • 第7题:

    设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()

    • A、(1+x)/(1-x)+c
    • B、(1-x)/(1+x)+c
    • C、1n|(1+x)/(1-x)|+c
    • D、1n|(1-x)/(1+x)|+c

    正确答案:C

  • 第8题:

    设随机变量X的概率密度和分布函数分别是f(x)和F(x),且f(x)=f(-x),则对任意实数a,有F(-a)=()

    • A、1/2-F(a)
    • B、1/2+F(a)
    • C、2F(a)-1
    • D、1-F(a)

    正确答案:D

  • 第9题:

    设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()


    正确答案:0.25

  • 第10题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()

    • A、F2(x)
    • B、F(x)F(y)
    • C、1-[1-F(x)]2
    • D、[1-F(x)][1-F(y)]

    正确答案:A

  • 第11题:

    单选题
    设f(x)=sinx,f[φ(x)]=1-x2,则φ(x)=(  )。
    A

    arcsin(1-x)

    B

    arcsin(1+x)

    C

    arcsin(1-x2

    D

    arcsin(1+x2


    正确答案: C
    解析:
    因sin(arcsinx)=x,又知f(x)=sinx,f[φ(x)]=1-x2,故φ(x)=arcsin(1-x2)。

  • 第12题:

    单选题
    设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?
    A

    f″(x)+f′(x)=0

    B

    f″(x)-f′(x)=0

    C

    f″(x)+f(x)=0

    D

    f″(x)-f(x)=0


    正确答案: C
    解析: 对已知式子两边求导。已知f′(x)=f(1-x),求导f″(x)=-f′(1-x),f(x)+f′(1-x)=0,将1-x代入式子f′(x)=f(1-x),得f′/(1-x)=f[1-(1-x)]=f(x),即f″(x)+f(x)=0

  • 第13题:

    设随机变量X的密度函数为f(x),且f(x)为偶函数,X的分布函数为F(x),则对任意实数a,有().



    答案:B
    解析:

  • 第14题:

    设随机变量X的分布函数为 则X的概率密度函数f(x)为( )。


    答案:B
    解析:
    由分布函数与概率密度函数关系f(x)=F'(x),当1≤x<e时,f(x)=,X的概率密度综合表示为

  • 第15题:

    设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.


    答案:
    解析:

  • 第16题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为



    A.AF^2(x)
    B.F(x)F(y)
    C.1-[1-F(x)]^2
    D.[1-F(x)][1-F(y)]

    答案:A
    解析:
    随机变量Z=max(X,Y)的分布函数Fz(x)应为Fz(x)=P{Z≤x},由此定义不难推出Fz(x).【求解】故答案应选(A).
    【评注】不难验证(B)F(x)F(y)恰是二维随机变量(X,Y)的分布函数.(C)1-[1-F(x)]^2则是随机变量min(X,Y)的分布函数.(D)[1-F(x)][1-F(y)]本身不是分布函数,因它不满足分布函数的充要条件.

  • 第17题:

    设随机变量x的概率密度为F(x)为X的分布函数,EX为X的数学期望,则P{F(X)>EX-1}=________.


    答案:
    解析:

  • 第18题:

    设随机变量x的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数 a,有( )。


    答案:B
    解析:

  • 第19题:

    设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?

    • A、f″(x)+f′(x)=0
    • B、f″(x)-f′(x)=0
    • C、f″(x)+f(x)=0
    • D、f″(x)-f(x)=0

    正确答案:C

  • 第20题:

    设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()

    • A、f1(x)f2(x)
    • B、2f2(x)F1(x)
    • C、f1(x)F2(x)
    • D、f1(x)F2(x)+f2(x)F1(x)

    正确答案:D

  • 第21题:

    设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()

    • A、f1(x)+f2(x)必为某一随机变量的概率密度
    • B、f1(x)f2(x)必为某一随机变量的概率密度
    • C、F1(x)+F2(x)必为某一随机变量的分布函数
    • D、F1(x)F2(x)必为某一随机变量的分布函数

    正确答案:D

  • 第22题:

    问答题
       随机变量(X,Y)在矩形区域D={(x,y)|a   求:(1)联合概率密度f(x,y).       (2)边缘概率密度f X(i),f Y(y).       (3)X与Y是否独立?

    正确答案:
    解析:

  • 第23题:

    单选题
    设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()
    A

    (1+x)/(1-x)+c

    B

    (1-x)/(1+x)+c

    C

    1n|(1+x)/(1-x)|+c

    D

    1n|(1-x)/(1+x)|+c


    正确答案: A
    解析: 计算等号右边式子,得到f′(x)表达式。计算不定积分。