更多“设总体X的概率密度为为总体X的简单随机样本,其样本方差为S^2,则E(S^2)_______.”相关问题
  • 第1题:

    设正态总体X的方差为1,根据来自总体X的容量为100的简单随机样本测得样本的均值为5,则总体X的数学期望的置信度近似等于0.95的置信区间为_______.


    答案:1、(4.804 2、5.196)
    解析:
    X~N(μ,1),取统计量,则μ的置信度为0.95的置信区间为  

  • 第2题:

    设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率


    答案:
    解析:
    总体均值为E(X)=μ,

    =Ф(3)-Ф(-3)=2Ф(3)-1=0.9973

  • 第3题:

    设总体X的分布律为P(X=i)=(i=1,2,…,θ,X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为_______(其中θ为正整数).


    答案:
    解析:

  • 第4题:

    设x为一个总体且E(x)=k,D(x)=1,X1,X2,…,xn为来自总体的简单随机样本,令,问n多大时才能使P?


    答案:
    解析:
    由切比雪夫不等式得

  • 第5题:

    设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,
      X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.


    答案:
    解析:

  • 第6题:

    设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2=
    ,则E(S^2)=_______.


    答案:
    解析:

  • 第7题:

    设总体X~N(0,2^2),X1,X2,…,X30为总体X的简单随机样本,求统计量U=所服从的分布及自由度.


    答案:
    解析:

  • 第8题:

    设总体X服从正态分布N(μ,σ^2)(σ>0),X1,X1,…,Xn为来自总体X的简单随机样本,令Y=.,求Y的数学期望与方差


    答案:
    解析:

  • 第9题:

    设总体X的概率密度为
      
      其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.
      (Ⅰ)求A;
      (Ⅱ)求σ的最大似然估计量.


    答案:
    解析:

  • 第10题:

    设总体X的概率密度为
      
      其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.
      (Ⅰ)求θ的矩估计量;
      (Ⅱ)求θ的最大似然估计量.


    答案:
    解析:

  • 第11题:

    设总体X~N(u,σ2),基于来自总体X的容量为16的简单随机样本,测得样本均值x= 31.645,样本方差S2=0.09,则总体均值μ的置信度为0.98的置信区间为( )。




    A.(30.88, 32.63)

    B.(31.45, 31.84)

    C.(31.62, 31.97)

    D.(30.45, 31.74)

    答案:B
    解析:

  • 第12题:

    设样本x1,x2,…,xn来自正态总体N(0,9),其样本方差为s2,则E(s2)=()


    正确答案:9

  • 第13题:

    设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.


    答案:
    解析:
    本题是数三的考题,根据切比雪夫大数定律或者辛钦大数定律,依概率收敛于答案应填

  • 第14题:

    设总体X服从分布N(0,2^2),而X1,X2,…,X15是来自总体X的简单随机样本,则随机变量服从_______分布,参数为________.


    答案:1、F 2、(10,5)
    解析:
    本题是数三的考题,由于X~N(0,2^2),则 
    且相互独立,故

    答案应填服从F分布,参数为(10,5).

  • 第15题:

    设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.


    答案:
    解析:

  • 第16题:

    设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).


    答案:
    解析:

  • 第17题:

    设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.


    答案:
    解析:
    【分析】答案应填.

  • 第18题:

    设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.


    答案:
    解析:

  • 第19题:

    若总体X~N(0,32),X1,X2,…,x9为来自总体样本容量为9的简单随机样本,则服从_______分布,其自由度为_______.


    答案:
    解析:
    因为X~N(0,3)(i=1,2,…,9),所以且相互独立,故,自由度为9.

  • 第20题:

    设总体X的概率密度为
      
    其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.

    (Ⅰ)求参数λ的矩估计量;

    (Ⅱ)求参数λ的最大似然估计量.


    答案:
    解析:

  • 第21题:

    设总体X的概率密度为
      
      其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.
      (Ⅰ)求θ的矩估计量;
      (Ⅱ)求θ的最大似然估计量.


    答案:
    解析:

  • 第22题:

    设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).
      (Ⅰ)求T的概率密度;
      (Ⅱ)确定a,使得aT为θ的无偏估计.


    答案:
    解析:

  • 第23题:

    设总体X~N(u,σ2),基于来自总体X的容量为16的简单随机样本,测得样本均值图.png= 31.645,样本方差S2=0.09,则总体均值μ的置信度为0.98的置信区间为()。




    A.(30.88, 32.63)

    B.(31.45, 31.84)

    C.(31.62, 31.97)

    D.(30.45, 31.74)

    答案:B
    解析: