更多“设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA”相关问题
  • 第1题:

    设A和B均为n阶矩阵,则必有( )。

    A.|A+B|=|A|+|B|
    B.AB=BA
    C.|AB|=|BA|
    D.


    答案:C
    解析:

  • 第2题:

    设A,B为n阶对称矩阵,下列结论不正确的是().

    A.AB为对称矩阵
    B.设A,B可逆,则A^-1+B^-1为对称矩阵
    C.A+B为对称矩阵
    D.kA为对称矩阵

    答案:A
    解析:

  • 第3题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第4题:

    设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。



    答案:A
    解析:
    已知(AB)2=I,即ABAB=I,说明矩阵A可逆,且A-1=BAB,用A右乘上式两端即可得解

  • 第5题:

    设A,B为n阶矩阵.
      (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.


    答案:
    解析:

  • 第6题:

    设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.


    答案:
    解析:

  • 第7题:

    设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.


    答案:
    解析:

  • 第8题:

    设A,B都是n阶矩阵,AB+E可逆.证明BA+E也可逆,并且.


    答案:
    解析:

  • 第9题:

    设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.


    答案:
    解析:

  • 第10题:

    设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。


    答案:
    解析:


  • 第11题:

    设A和B都是n阶矩阵.记,. (1)求HG和GH. (2)证明|E-AB|=|E-BA|.


    答案:
    解析:

  • 第12题:

    问答题
    设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。

    正确答案:
    设A的n个两两正交的特征向量为α()1,α()2,…,α()n,其对应的特征值依次为λ12,…,λn
    ξ()i=α()i/,α()i,(i=1,2,…,n),则ξ()1,ξ()2,…,ξ()n是两两正交的单位向量。
    记P=(ξ()1,ξ()2,…,ξ()n),即P是正交矩阵。从而有P-1=PT,P-1AP=diag(λ12,…,λn)=Λ,即A=PΛP-1=PΛPT,故AT=(PΛPT)T=(PT)TΛTPT=PΛPT=A,即A是对称矩阵。
    解析: 暂无解析

  • 第13题:

    N阶实对称矩阵A正定的充分必要条件是().



    A.A无负特征值
    B.A是满秩矩阵
    C.A的每个特征值都是单值
    D.A^-1是正定矩阵

    答案:D
    解析:
    A正定的充分必要条件是A的特征值都是正数,(A)不对;若A为正定矩阵,则A一定是满秩矩阵,但A是满秩矩阵只能保证A的特征值都是非零常数,不能保证都是正数,(B)不对;(C)既不是充分条件又不是必要条件;显然(D)既是充分条件又是必要条件,选(D).

  • 第14题:

    设A是一个n阶矩阵,那么是对称矩阵的是( ).



    答案:A
    解析:

  • 第15题:

    设A,B皆为n阶矩阵,则下列结论正确的是().

    A.AB=O的充分必要条件是A=O或B-O
    B.AB≠O的充分必要条件是A≠0且B≠0
    C.AB=O且r(A)=N,则B=O
    D.若AB≠0,则|A|≠0或|B|≠0

    答案:C
    解析:

  • 第16题:

    设A与B都是n阶方阵,且,证明AB与BA相似.


    答案:
    解析:

  • 第17题:

    设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。


    答案:
    解析:

  • 第18题:

    设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


    答案:
    解析:

  • 第19题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第20题:

    证明;对任意的n阶矩阵A,为对称矩阵,而为反对称矩阵.


    答案:
    解析:

  • 第21题:

    设A、B都是n阶方阵,满足AB=A-B,请证明:AB=BA


    答案:
    解析:

  • 第22题:

    设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,


    答案:
    解析:

  • 第23题:

    设A与B都是n阶正交矩阵,证明AB也是正交矩阵.


    答案:
    解析: