设A,B为同阶方阵, (1)若A,B相似,证明A,B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当A,B均为实对称矩阵时,证明(1)的逆命题成立

题目
设A,B为同阶方阵, (1)若A,B相似,证明A,B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当A,B均为实对称矩阵时,证明(1)的逆命题成立


相似考题
更多“设A,B为同阶方阵, (1)若A,B相似,证明A,B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当A,B均为实对称矩阵时,证明(1)的逆命题成立”相关问题
  • 第1题:

    设A、B均为三阶方阵,且行列式|A|=1,|B|=-2,A^T为A的转置矩阵,则行列式|-2A^TB^-1|=(  )。

    A. -1
    B. 1
    C. -4
    D. 4

    答案:D
    解析:
    因为A、B均为三阶方阵,计算得
    |-2A^TB^-1|=(-2)^3×|A^T|×|B^-1|=(-2)^3×1×(1/-2)=4

  • 第2题:

    设A为n阶可逆方阵,则( )不成立。

    A.
    B.
    C.-2A可逆
    D.A+E可逆

    答案:D
    解析:

  • 第3题:

    设A与B都是n阶方阵,且,证明AB与BA相似.


    答案:
    解析:

  • 第4题:

    设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,并举例说明逆命题不成立.


    答案:
    解析:

  • 第5题:

    设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B, (1)证明B可逆; (2)求.


    答案:
    解析:

  • 第6题:

    为n阶方阵A的两个互不相等的特征值,与之对应的特征向量分别为X1,X2,证明X1,X2不是矩阵A的特征向量。


    答案:
    解析:

  • 第7题:

    设3阶矩阵A=[α1,α2,α3]有3个不同的特征值,且a3=a1+2a2.
      (Ⅰ)证明r(A)=2;
      (Ⅱ)若β=α1,α2,α3,求方程组Ax=β的通解.


    答案:
    解析:

  • 第8题:

    问答题
    已知A=(aij),B=(bij)为两个n阶方阵。  X为n阶方阵。证明:AX=B有解的充要条件是n+1个矩阵A,A1,A2,…,An的秩相等。

    正确答案:
    (1)必要性
    设AX=B有解,令X()1,X()2,…,X()n是X的列向量,B()1,B()2,…,B()n是B的列向量。由AX=B有解知方程组AX()k=B()k(k=1,2,…,n)有解,于是有r(A)=r(A┆B()k)=r(Ak)(k=1,2,…,n),即A,A1,A2,…,An的秩相等。
    (2)充分性
    若A,A1,A2,…,An的秩都相等,则方程组AX()k=B()k有解。记其解为C()i(i=1,2,…,n),则AC=B(其中C是以Ci为列向量的矩阵),即C为AX=B的解,故AX=B有解。
    解析: 暂无解析

  • 第9题:

    填空题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

    正确答案: -(A+E)/2
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。

  • 第10题:

    单选题
    设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于(  )。
    A

    |A|2

    B

    |A|n

    C

    |A|2n

    D

    |A|2n-1


    正确答案: D
    解析:
    ||A|A*|=|A|n·|A*|=|A|n·|A|n-1=|A|2n-1

  • 第11题:

    单选题
    设A、B均为三阶方阵,且行列式|A|=1,|B|=-2,AT为A的转置矩阵,则行列式|-2ATB-1|=(  )。[2018年真题]
    A

    -1

    B

    1

    C

    -4

    D

    4


    正确答案: B
    解析:
    因为A、B均为三阶方阵,计算得|-2ATB1|=(-2)3×|AT|×|B1|=(-2)3×1×(-1/2)=4。

  • 第12题:

    问答题
    设A为n阶方阵,若对任意n维向量X=(x1,x2,…,xn)T都有AX=0.证明:A=0.

    正确答案:
    证明:由对任意n维向量X都有AX=0,知对基本单位向量组ε1,ε2,…,εn,Aεi=0(i=1,2,…,n)成立.
    所以有A(ε1,ε2,…,εn)=0,即AE=0,故A=0.
    解析: 暂无解析

  • 第13题:

    若A,B均为n阶方阵,则当|A|>|B|时,A,B一定不相似


    答案:对
    解析:
    正确,因为相似矩阵必须有相同特征值和行列式

  • 第14题:

    如右图,在梯形ABCD中,点E、F分别是腰AB、CD上的点.
    (1)证明:如果E、F为中点时,有 EF=1/2(AD+BC);
    (2)请写出(1)中命题的逆命题,并判断该逆命题是否成立,若成立,请给予证明;若不成立,请说明理由.



    答案:
    解析:
    (1)证明:连接AC,设AC中点为日,连接EH、FH



    逆命题不成立.
    理由如下:连接AC,连接BD,延长AD至M使DM=AD,延长BC至N,使CN=AD,连接MN、DN.由DM平行且等于CN可知,DN平行且等于AC由ADBN可知,BD+DM>BN,即BD+AC>BC+AD



    又AD<EF可知AD<EF<BD过点D作直线交AB于Q,则AD<DQ<BD,其中必有DQ=EF同理,若AC>EF,Q为DC上-点,则必有AQ=EF且A、D均不是AB、CD的中点故命题错误.

  • 第15题:

    设A,B为n阶矩阵.
      (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.


    答案:
    解析:

  • 第16题:

    设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.
      (1)证明B可逆;
      (2)求AB^-1.


    答案:
    解析:

  • 第17题:

    设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.


    答案:
    解析:

  • 第18题:

    设二维非零向量α不是二阶方阵A的特征向量.
      (1)证明α,Aα线性无关;
      (2)若Aα^2+Aα-6α=0,求A的特征值,讨论A可否对角化;


    答案:
    解析:

  • 第19题:

    设3阶方阵A的秩R(A)=1,则A的伴随矩阵的秩R()等于().

    • A、3
    • B、2
    • C、1
    • D、0

    正确答案:D

  • 第20题:

    单选题
    设3阶方阵A的秩R(A)=1,则A的伴随矩阵的秩R()等于().
    A

    3

    B

    2

    C

    1

    D

    0


    正确答案: B
    解析: 暂无解析

  • 第21题:

    单选题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=(  )。
    A

    0

    B

    1

    C

    2

    D

    3


    正确答案: A
    解析:
    取基本单位向量组为ε()1ε()2,…,ε()n
    当m=n时,由对任意B都有AB=0,则对B=(ε()1ε()2,…,ε()n)=En也成立,即AE=0,故A=0。
    当m>n时,取B=(ε()1ε()2,…,ε()nB()1)=(EnB()1),则由AB=A(EnB()1)=0,知AEn=0,故A=0。

  • 第22题:

    单选题
    设A为4阶方阵,且r(A)=3,A*为A的伴随矩阵,则r(A*)=(  )。
    A

    0

    B

    1

    C

    2

    D

    3


    正确答案: B
    解析:
    由A是4阶方阵且r(A)=3,知|A|=0,又AA*=|A|E=0为A的齐次方程组,则A*的列向量是齐次方程组Ax()0()的解,故r(A)+r(A*)≤4,则r(A*)≤1。由r(A)=3知,A至少有一个代数余子式不为0,故A*≠0,所以r(A*)=1。

  • 第23题:

    问答题
    设A为n阶方阵,若对任意n维向量x(→)=(x1,x2,…,xn)T都有Ax(→)=0。证明:A=0。

    正确答案:
    由对任意n维向量x()都有Ax()=0,知对基本单位向量组ε()1,ε()2,…,ε()n,Aε()i=0(i=1,2,…,n)成立。
    所以有A(ε()1,ε()2,…,ε()n)=0,即AE=0,故A=0。
    解析: 暂无解析