现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.

题目
现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.


相似考题
参考答案和解析
答案:
解析:
更多“现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.”相关问题
  • 第1题:

    甲袋有白球3只,红球7只,黑球l5只。乙袋有白球10只,红球6只,黑球9只。现从两袋中各取一个,试求两球颜色相同的概率约为( )。

    A.0.17

    B.0.33

    C.0.45

    D.0.8


    正确答案:B

  • 第2题:

    箱子里有红、白两种玻璃球,红球是白球的3倍少2个。每次从箱子里取出7个白球、13个红球,经过若干次后,箱子里剩下6个白球,72个红球,那么,原来箱予里红球比白球多多少个?( )

    A.102

    B.104

    C.106

    D.108


    正确答案:D
    D[解析]假设箱子里原来有白球x个,那么红球为(3x-2)个,依题意有(x-6)÷7=(3x-2-72)÷13,解得x=55,所以原来红球比白球多3×55-2-55=108(个)。故选D。

  • 第3题:

    一个口袋内有4个不同的红球,6个不同的白球.
    (1)从中任取4个球,红球的个数不比白球少的取法有多少种?
    (2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?


    答案:
    解析:
    解:(1)由题意知本题是一个分类计数问题.将取出4个球分成三类情况:取4个红

  • 第4题:

    一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.
      (1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.


    答案:
    解析:
    【解】(1)设A1={一次性抽取4个球,其中2个红球2个白球),则
    (2)设A2={逐个抽取4个球,取后不放回,其中2个红球2个白球},则

    (3)设A3={逐个抽取4个球,取后放回,其中2个红球2个白球},则

  • 第5题:

    有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.
      (1)写出X的分布律;(2)求所取到的红球数不少于2个的概率.


    答案:
    解析:

  • 第6题:

    甲盒内有红球4只,黑球2只,白球2只;乙盒内有红球5只,黑球3只;丙盒内有黑球2只,白球2只,从这三只盒子的任意一只中任取出一只球,它是红球的概率是( )

    A.0.5625
    B.0.5
    C.0.45
    D.O.375
    E.0.225

    答案:D
    解析:

  • 第7题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第8题:

    一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。每次取出1个球,求最多取到3个白球的概率。


    答案:
    解析:

  • 第9题:

    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().

    • A、21/90.
    • B、21/45
    • C、21/100
    • D、21/50

    正确答案:B

  • 第10题:

    填空题
    一袋中有50个乒乓球,其中20个红球,30个白球,今两人从袋中各取一球,取后不放回,则第二个人取到红球的概率为____。

    正确答案: 2/5
    解析:
    设A:“第一个人取红球”,B:“第二个人取红球”,则
    P(B)=P[B(A∪A(_))]=P(AB)+P(A(_)B)=P(B|A)P(A)+P(B|A(_))P(A(_))=(19/49)×(20/50)+(20/49)×(30/50)=2/5

  • 第11题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析

  • 第12题:

    单选题
    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().
    A

    21/90.

    B

    21/45

    C

    21/100

    D

    21/50


    正确答案: C
    解析: 暂无解析

  • 第13题:

    箱子里有红、白两种玻璃球。红球是向球的3倍少2个。每次从箱子里取出7个白球、13个红球,经过若干次后,箱子里剩下6个白球,72个红球,那么,原来箱子里红球比白球多多少个?( )

    A.102

    B.104

    C.106

    D.108


    正确答案:D
    假设箱子里原来有白球x个,那么红球为(3x--2)个,依题意有(x-6)÷7=(3x-2-72)÷13,解得x=55,所以原来红球比白球多3×55-2-55=108(个)。故选D。

  • 第14题:

    有十个小球,其中4个红球,6个白球,若取到一个红球记2分,取到1个白球记1分,现从这十个球取出4个球,使总分不低于5分的取法有多少种


    答案:
    解析:

  • 第15题:

    箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球、15个红球。如果经过若干次以后,箱子里只剩下3个白球、53个红球,那么,箱子里原有红球比白球多多少个?

    A.102
    B.104
    C.106
    D.108

    答案:C
    解析:
    设共取了x次,原有红球(53+15x)个,原有白球(3+7x)个,由题意可得,53+15x=3(3+7x)+2,解得x=-7.原有红球比白球多(53+15x)一(3+7x)=106个,应选择C。

  • 第16题:

    袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:
      (1)两个球中一个是红球一个是白球;
      (2)两个球颜色相同.


    答案:
    解析:
    【解】(1)令A={抽取的两个球中一个是红球一个是白球},则.
    (2)令B={抽取的两个球颜色相同},则

  • 第17题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第18题:

    袋中有l个红色球,2个黑色球与三个白球,现有放回地从袋中取两次,每次取一球,以 X,Y,Z分别表示丽次取球所取得的红球、黑球与白球的个数。
    (1)求P{X=1|Z=0};
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第19题:

    一个袋子里有8个黑球,8个白球,随机不放回连续取球5次,每次取出1个球,求最多取到3个白球的概率. .?


    答案:
    解析:

  • 第20题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第21题:

    一口袋有6个白球,4个红球,“无放回”地从袋中取出3个球,则事件“恰有两个红球”的概率为()


    正确答案:3/10

  • 第22题:

    问答题
    38.当袋中有2个白球3个红球.现从袋中随机地抽取2个球,以X表示取到的红球个数。求X的分布律.

    正确答案:
    解析:

  • 第23题:

    单选题
    65.某次抽奖活动在三个箱子中均放有红.黄.一绿.蓝.紫.橙.白.黑8种颜色的球各一个,奖励规则如下:从三个箱子中分别摸出一个球,摸出的3个球均为红球的得一等奖,摸出的3个球中至少有一个绿球的得二等奖,摸出的3个球均为彩色球(黑.白除外)的得三等奖。问不中奖的概率是多少?(  )
    A

    在0~25%之间

    B

    在25~50%之间

    C

    在50~75%之间

    D

    在75~100%之间


    正确答案: C
    解析: