参考答案和解析
答案:错
解析:
更多“若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解《》( )”相关问题
  • 第1题:

    设A是m×n阶矩阵,则下列命题正确的是().

    A.若mB.若m>n,则方程组AX=b一定有唯一解
    C.若r(A)=n,则方程组AX=b一定有唯一解
    D.若r(A)=m,则方程组AX=b一定有解

    答案:D
    解析:
    因为若r(A)=m(即A为行满秩矩阵),则r()=m,于是r(A)=r(),即方程组AX=b一定有解,选(D).

  • 第2题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解


    答案:错
    解析:

  • 第3题:

    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

    A.若Ax=0仅有零解,则Ax=b有惟一解
    B.若Ax=0有非零解,则Ax=b有无穷多个解
    C.若Ax=b有无穷多个解,则Ax=0仅有零解
    D.若Ax=b有无穷多个解,则Ax=0有非零解

    答案:D
    解析:

  • 第4题:

    非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。


    答案:D
    解析:
    非齐次方程组解的判定需要验证r(A)是否等于r(A,b),A,B,C都无法判断。D项:r=m时,r(A)=r(A,b)=m,方程组必有解.

  • 第5题:

    非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。

    A 当r=m时,方程组AX=b有解
    B 当r=n时,方程组AX=b有惟一解
    C 当m=n时,方程组AX=b有惟一解
    D 当r<n时,方程组AX=b有无穷多解

    答案:A
    解析:
    系数矩阵A是m×n矩阵,增个矩阵B是m×(n+1)矩阵当R(A)=r=m时,由于R(B)≥R(A)=m,而B仅有m行,故有R(B)≤m,从而R(B)=m,即R(A)=R(B),方程组有解

  • 第6题:

    若A为m×n矩阵,B为n×m矩阵,则( ).

    A.当m>n时ABX=0必有非零解
    B.当m>n时AB必可逆
    C.当n>m时ABX=0只有零解
    D.当n>m时必有r(AB)<m

    答案:A
    解析:
    r(AB)≤r(A)≤n<m,AB是m阶方阵,由于系数矩阵的秩小于未知数的个数,故ABX=0有非零解.

  • 第7题:

    单选题
    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是(  )。
    A

    若Ax=0仅有零解,则Ax=b有唯一解

    B

    若Ax=0有非零解,则Ax=b有无穷多个解

    C

    若Ax=b有无穷多个解,则Ax=0仅有零解

    D

    若Ax=b有无穷多个解,则Ax=0有非零解


    正确答案: D
    解析:
    由解的判定定理知,对Ax=b,若有r(A)=r(A(_))=r,则Ax=b一定有解。进一步,若r=n,则Ax=b有唯一解;若r<n,则Ax=b有无穷多解。而对Ax=0一定有解,且设r(A)=r,则若r=n,Ax=0仅有零解;若r<n,Ax=0有非零解。因此,若Ax=b有无穷多解,则必有r(A)=r(A)=r<n,Ax=0有非零解,所以D项成立。但反过来,若r(A)=r=n(或<n),并不能推导出r(A)=r(A(_)),所以Ax=b可能无解,更谈不上有唯一解或无穷多解。

  • 第8题:

    单选题
    设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是(  )。
    A

    若AX()0()仅有零解,则AX()b()有唯一解

    B

    若AX()0()有非零解,则AX()b()有无穷多解

    C

    若AX()b()有无穷多解,则AX()0()仅有零解

    D

    若AX()b()有无穷多解,则AX()0()有非零解


    正确答案: A
    解析:
    由方程组AX()0()有解,不能判定AX()b()是否有解;由AX()b()有唯一解,知AX()0()只有零解;由AX()b()由无穷多解,知AX()0()有非零解。

  • 第9题:

    单选题
    非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。
    A

    r=m时,方程组AX()b()有解

    B

    r=n时,方程组AX()b()有唯一解

    C

    m=n时,方程组AX()b()有唯一解

    D

    r<n时,方程组AX()b()有无穷多解


    正确答案: A
    解析:
    A项,由于r=m,则方程组AX()b()的增广矩阵化为阶梯形矩阵时,阶梯形矩阵不为0的行数为m,r(A)=r(A(_))=m,所以AX()b()有解;
    B项,当r=n时,可知n≤m,当n<m时,则方程组AX()b()不一定只有唯一解;
    C项,当m=n时,r(A(_))不一定等于r,方程组不一定有解;
    D项,当r<n时,不能保证r(A)=r(A(_))=r,方程组AX()b()不一定有解。

  • 第10题:

    问答题
    设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。

    正确答案:
    由AX()=b()有唯一解知r(A)=r(A┆b())=n,因此AX()=0()只有零解。
    若r(ATA)TAX()=0()有非零解,即存在X()0≠0使ATAX()0=0()。所以有X()0TATAX()0=(AX()0)TAX()0=0(),即AX()0=0()。于是方程组AX()=0()有非零解,这与AX()=0()只有零解矛盾,故r(ATA)=n,即ATA可逆。
    由AX()=b()得,ATAX()=ATb(),有X()=(ATA)-1ATb()。如果η()1,η()2,…,η()t是线性方程组AX()=b()的解,则u1η()1+u2η()2+…+utη()t也是AX()=b()的一个解。其中u1+u2+…+ut=1。
    因为η()1,η()2,…,η()t是AX()=b()的解,所以η()2-η()1,η()3-η()1,…,η()t-η()1是AX()=0()的解。
    由u1+u2+…+ut=1,得u1=1-u2-u3…-ut,所以有u1η()1+u2η()2+…+utη()t=(1-u2-u3-…-ut)η()1+u2η()2+…+utη()t=η()1+u2(η()2-η()1)+u3(η()3-η()1)+…+ut(η()t-η()1),即u1η()1+u2η()2+…+utη()t也是AX()=b()的解。
    解析: 暂无解析

  • 第11题:

    若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解


    答案:对
    解析:

  • 第12题:

    非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则

    A.r=m时,方程组A-6有解.
    B.r=n时,方程组Ax=b有唯一解.
    C.m=n时,方程组Ax=b有唯一解.
    D.r

    答案:A
    解析:
    因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,

  • 第13题:

    设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

    A.r=n
    B.r<n
    C.r≥n
    D.r>n

    答案:B
    解析:
    Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。

  • 第14题:

    设A为m×n阶矩阵,且r(A)=mAA的任意m个列向量都线性无关
    BA的任意m阶子式都不等于零
    C非齐次线性方程组AX=b一定有无穷多个解
    D矩阵A通过初等行变换一定可以化为


    答案:C
    解析:
    显然由r(A)=mm

  • 第15题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第16题:

    非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).

    A.r=m时,方程组AX=b有解
    B.r=n时,方程组AX=b有唯一解
    C.m=m时,方程组AX=b有唯一解
    D.r<n时,方程组AX=b有无穷多解

    答案:A
    解析:

  • 第17题:

    单选题
    设A是m×n矩阵,则m<n是齐次线性方程组ATAX(→)=0(→)有非零解的(  )。
    A

    必要条件

    B

    充分条件

    C

    充要条件

    D

    以上都不对


    正确答案: D
    解析:
    充分性:因r(ATA)≤r(A)≤m<n,其中n是ATA的阶数,即方程组ATAX()0()的未知数的个数,故方程组ATAX()0()有非零解;但不必要,因为当m≥n时,r(ATA)≤n≤m,此时方程组可能只有零解,也可能有非零解。

  • 第18题:

    单选题
    若A为m×n矩阵,B为n×m矩阵,则(  )。
    A

    当m>n时,ABX()0()必有非零解

    B

    当m>n时,AB必可逆

    C

    当n>m时,ABX()0()只有零解

    D

    当n>m时,必有r(AB)<m


    正确答案: A
    解析:
    r(AB)≤r(A)≤n<m,AB是m阶方阵,由于系数矩阵的秩小于未知数的个数,故ABX()0()有非零解。

  • 第19题:

    单选题
    若A为m×n矩阵,B为n×m矩阵,则(  ).
    A

    当m>n时ABX=0必有非零解

    B

    当m>n时AB必可逆

    C

    当n>m时ABX=0只有零解

    D

    当n>m时必有r(AB)<m


    正确答案: C
    解析:
    r(AB)≤r(A)≤n<m,AB是m阶方阵,由于系数矩阵的秩小于未知数的个数,故ABX=0有非零解.