参考答案和解析
答案:C
解析:
更多“设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有( ).《》( ) ”相关问题
  • 第1题:

    设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



    答案:C
    解析:

  • 第2题:

    N阶矩阵A经过若干次初等变换化为矩阵B,则().

    A.|A|=|B|
    B.|A|≠|B|
    C.若|A|=0则|B|=0
    D.若|A|>0则|B|>0

    答案:C
    解析:

  • 第3题:

    设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.


    答案:
    解析:

  • 第4题:

    设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


    答案:
    解析:

  • 第5题:

    设A,B为n阶正定矩阵.证明:A+B为正定矩阵.


    答案:
    解析:

  • 第6题:

    利用矩阵的初等变换,求方阵的逆


    答案:
    解析:

  • 第7题:

    设n阶方阵是一个上三角矩阵,则需存储的元素个数为()。

    A.n
    B.n×n
    C.n×n/2
    D.n(n+1)/2

    答案:D
    解析:
    在上三角矩阵中,第一行有1个元素,第二行有2个元素,…,第n行有n个元素,则共n(n+1)/2个。

  • 第8题:

    设A是m阶矩阵,B是n阶矩阵,行列式等于( )。


    答案:D
    解析:

  • 第9题:

    填空题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

    正确答案: -(A+E)/2
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。

  • 第10题:

    单选题
    设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于(  )。
    A

    |A|2

    B

    |A|n

    C

    |A|2n

    D

    |A|2n-1


    正确答案: D
    解析:
    ||A|A*|=|A|n·|A*|=|A|n·|A|n-1=|A|2n-1

  • 第11题:

    问答题
    设A是n阶方阵,AAT=E,|A|<0,求|A+E|,其中AT是A的转置矩阵。

    正确答案:
    因为AAT=E,所以,A+E,=,A+AAT,=,A(E+AT),=,A,·,E+AT,=,A,·,E+A,,整理得,,A+E,(1-,A,)=0。由,A,<0,知1-,A,≠0,故,A+E,=0。
    解析: 暂无解析

  • 第12题:

    单选题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。
    A

    A+2E

    B

    A+E

    C

    (A+E)/2

    D

    -(A+E)/2


    正确答案: A
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。

  • 第13题:

    设a为N阶可逆矩阵,则( ).

    A.若AB=CB,则a=C
    B.
    C.A总可以经过初等变换化为单位矩阵E
    D.以上都不对


    答案:C
    解析:

  • 第14题:

    设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.
      (1)证明B可逆;
      (2)求AB^-1.


    答案:
    解析:

  • 第15题:

    设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B, (1)证明B可逆; (2)求.


    答案:
    解析:

  • 第16题:

    设A为三阶方阵,A*为矩阵A的伴随矩阵,,请计算


    答案:
    解析:

  • 第17题:

    设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,


    答案:
    解析:

  • 第18题:

    设a为N阶可逆矩阵,则( ).《》( )


    答案:C
    解析:

  • 第19题:

    设 A为 n 阶方阵,B是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是( )。

    A.|A|=|B|

    B.|A|≠|B|

    C.若|A|=0,则一定有 |B|=0

    D.若 |A|> 0,则一定有 |B|> 0

    答案:C
    解析:
    本题主要考查矩阵的初等变换及行列式的主要性质。对矩阵可以做如下三种变换:(1)对调两行,记作

    (2)以数 乘某一行的所有元素,记作 。(3)把某一行所有元素的 k 倍加到另一行对应的元素上去,记作

    若方阵 A 经过以上三种初等变换得到方阵 B,则对应的行列式的关系依次为 |A|=–|B|,k|A|=|B|,|A|=|B|,即 |A|=a|B|, a∈R (a ≠ 0)。所以 |A|=0 时,必有 |B|=0。C项正确。

    A、B、D三项:均为干扰项。与题干不符,排除

  • 第20题:

    设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).



    答案:D
    解析:

  • 第21题:

    单选题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=(  )。
    A

    0

    B

    1

    C

    2

    D

    3


    正确答案: A
    解析:
    取基本单位向量组为ε()1ε()2,…,ε()n
    当m=n时,由对任意B都有AB=0,则对B=(ε()1ε()2,…,ε()n)=En也成立,即AE=0,故A=0。
    当m>n时,取B=(ε()1ε()2,…,ε()nB()1)=(EnB()1),则由AB=A(EnB()1)=0,知AEn=0,故A=0。

  • 第22题:

    填空题
    设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

    正确答案: 0
    解析:
    取基本单位向量组为ε1,ε2,…εn
    当m=n时,由对任意B都有AB=0,则对B=(ε1,ε2,…εn)=En也成立,即AE=0,故A=0.
    当m>n时,取B=(ε1,ε2,…εn,B1)=(En,B1),则由AB=A(En,B1)=0,知AEn=0,故A=0.

  • 第23题:

    单选题
    设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有(  )。
    A

    |A|=|B|

    B

    |A|≠|B|

    C

    若|A|=0,则一定有|B|=0

    D

    若|A|>0,则一定有|B|>0


    正确答案: A
    解析:
    矩阵A经过若干次初等变换后得到矩阵B,则存在可逆矩阵P,Q使得B=PAQ,因此|B|=|PAQ|=|P|·|A|·|Q|,若|A|=0,则必有|B|=|P|·|A|·|Q|=0成立。