更多“设随机变量X的密度函数为f(x),且f(x)为偶函数,X的分布函数为F(x),则对任意实数a,有(). ”相关问题
  • 第1题:

    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。

    A. f[g(x)]
    B. f[f(x)]
    C. g[f(x)]
    D. g[g(x)]

    答案:D
    解析:
    D项,令T(x)=g[g(x)]。因为T(-x)=g[g(-x)]=g[-g(x)]=-g[g(x)],所以T(-x)=-T(x),所以g[g(x)]为奇函数。

  • 第2题:

    设随机变量X的分布函数为F(x),则下列函数中可作为某随机变量的分布函数的是( ).

    A.F(x^2)
    B.F(-z)
    C.1-F(x)
    D.F(2x-1)

    答案:D
    解析:
    函数Φ(x)可作为某一随机变量的分布函数的充分必要条件是:(1)0≤Φ(x)≤1;(2)Φ(x)单调不减;(3)Φ(x)右连续;(4)Φ(-∞)-0,Φ(+∞)=1.显然只有F(2x-1)满足条件,选(D).

  • 第3题:

    设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数a有( )。

    A.
    B.
    C.F(-a)=F(a)
    D.F(-a)=2F(a)-1

    答案:B
    解析:

  • 第4题:

    设连续型随机变量X的分布函数为F(x)=
      (1)求常数A,B;(2)求X的密度函数f(x);(3)求P


    答案:
    解析:

  • 第5题:

    设随机变量X的密度函数为f(x)=则P{|X—E(X)|<2D(X)}=_______.


    答案:
    解析:

  • 第6题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为



    A.AF^2(x)
    B.F(x)F(y)
    C.1-[1-F(x)]^2
    D.[1-F(x)][1-F(y)]

    答案:A
    解析:
    随机变量Z=max(X,Y)的分布函数Fz(x)应为Fz(x)=P{Z≤x},由此定义不难推出Fz(x).【求解】故答案应选(A).
    【评注】不难验证(B)F(x)F(y)恰是二维随机变量(X,Y)的分布函数.(C)1-[1-F(x)]^2则是随机变量min(X,Y)的分布函数.(D)[1-F(x)][1-F(y)]本身不是分布函数,因它不满足分布函数的充要条件.

  • 第7题:

    假设随机变量X的分布函数为F(x),密度函数为f(x).若X与-X有相同的分布函数,则下列各式中正确的是( )《》( )

    A.F(x)=F(-x);
    B.F(x)=-F(-x);
    C.f(x)=f(-x);
    D.f(x)=-f(-x).

    答案:C
    解析:

  • 第8题:

    命题“若f(x)为奇函数,则f(-x)为奇函数”的否命题( )。

    A.若f(x)为偶函数,则f(-x)为偶函数
    B.若f(x)不是奇函数,则f(-x)不是奇函数
    C.若f(-x)为奇函数,则fD.若f(-x)为奇函数,则f(x)不是奇函数

    答案:B
    解析:

  • 第9题:

    设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是奇函数时,下面结论正确的是()。

    • A、F(x)是偶函数
    • B、F(x)是奇函数
    • C、F(x)可能是奇函数,也可能是偶函数
    • D、F(x)是否为奇函数不能确定

    正确答案:A

  • 第10题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()

    • A、F2(x)
    • B、F(x)F(y)
    • C、1-[1-F(x)]2
    • D、[1-F(x)][1-F(y)]

    正确答案:A

  • 第11题:

    单选题
    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是()。
    A

    f[g(x)]

    B

    f[f(x)]

    C

    g[f(x)]

    D

    g[g(x)]


    正确答案: D
    解析:

  • 第12题:

    单选题
    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。[2018年真题]
    A

    f[g(x)]

    B

    f[f(x)]

    C

    g[f(x)]

    D

    g[g(x)]


    正确答案: C
    解析:
    D项,令T(x)=g[g(x)]。因为T(-x)=g[g(-x)]=g[-g(x)]=-g[g(x)],所以T(-x)=-T(x),所以g[g(x)]为奇函数。

  • 第13题:

    设f(x)是定义在[-a,a]上的任意函数,则下列答案中哪个函数不是偶函数?

    A.f(x)+f(-x)
    B.f(x)*f(-x)
    C.[f(x)]2
    D.f(x2)

    答案:C
    解析:
    提示:利用函数的奇偶性定义来判定。选项A、B、D均满足定义F(-x)=F(x),所以为偶函数,而C不满足,设F(x)= [f(x)]2,F(-x)= [f(-x)]2,因为f(x)是定义在 [-a,a]上的任意函数,f(x)可以是奇函数,也可以是偶函数,也可以是非奇非偶函数,从而推不出F(-x)=F(x)或 F(-x) = -F(x)。

  • 第14题:

    设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与-X分布函数相同,则().



    A.F(z)=F(-x)
    B.F(x)=F(-x)
    C.F(X)=F(-x)
    D.f(x)=f(-x)

    答案:C
    解析:

  • 第15题:

    设随机变量X的分布函数为 则X的概率密度函数f(x)为( )。


    答案:B
    解析:
    由分布函数与概率密度函数关系f(x)=F'(x),当1≤x<e时,f(x)=,X的概率密度综合表示为

  • 第16题:

    设随机变量X的密度函数为f(x)=
      (1)求常数A;(2)求X在内的概率;(3)求X的分布函数F(x).


    答案:
    解析:

  • 第17题:

    设X~N(μ,σ^2),其分布函数为F(x),对任意实数a,讨论F(-a)+F(a)与1的大小关系.


    答案:
    解析:

    则μ>0时,F(a)+F(-a)小于1;
    当μ=0时,F(a)+F(-a)=1;
    当μa小于0时,F(a)+F(-a)大于1.

  • 第18题:

    设随机变量x的概率密度为F(x)为X的分布函数,EX为X的数学期望,则P{F(X)>EX-1}=________.


    答案:
    解析:

  • 第19题:

    设随机变量x的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数 a,有( )。


    答案:B
    解析:

  • 第20题:

    设随机变量X的概率密度和分布函数分别是f(x)和F(x),且f(x)=f(-x),则对任意实数a,有F(-a)=()

    • A、1/2-F(a)
    • B、1/2+F(a)
    • C、2F(a)-1
    • D、1-F(a)

    正确答案:D

  • 第21题:

    设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()

    • A、f1(x)+f2(x)必为某一随机变量的概率密度
    • B、f1(x)f2(x)必为某一随机变量的概率密度
    • C、F1(x)+F2(x)必为某一随机变量的分布函数
    • D、F1(x)F2(x)必为某一随机变量的分布函数

    正确答案:D

  • 第22题:

    设f(x)是R上的函数,则下列叙述正确的是()。

    • A、f(x)f(-x)是奇函数
    • B、f(x)|f(x)|是奇函数
    • C、f(x)-f(-x)是偶函数
    • D、f(x)+f(-x)是偶函数

    正确答案:D

  • 第23题:

    单选题
    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为(  )。
    A

    F2(x)

    B

    F(x)F(y)

    C

    1-[1-F(x)]2

    D

    [1-F(x)][1-F(y)]


    正确答案: C
    解析:
    FZ(x)=P{Z≤x}=P{max(X,Y)≤x}=P{X≤x,Y≤x}=P{X≤x}·P{Y≤x}=F2(x),故应选A。