设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解 B.若Ax=0有非零解,则Ax=b有无穷多个解 C.若Ax=b有无穷多个解,则Ax=0仅有零解 D.若Ax=b有无穷多个解,则Ax=0有非零解

题目
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

A.若Ax=0仅有零解,则Ax=b有惟一解
B.若Ax=0有非零解,则Ax=b有无穷多个解
C.若Ax=b有无穷多个解,则Ax=0仅有零解
D.若Ax=b有无穷多个解,则Ax=0有非零解

相似考题
更多“设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。”相关问题
  • 第1题:

    设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.


    正确答案:
    b

  • 第2题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解


    答案:对
    解析:

  • 第3题:

    若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解


    答案:对
    解析:

  • 第4题:

    设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

    A.不存在.
    B.仅含一个非零解向量.
    C.含有两个线性无关的解向量.
    D.含有三个线性无关的解向量.

    答案:B
    解析:

  • 第5题:

    非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。


    答案:D
    解析:
    非齐次方程组解的判定需要验证r(A)是否等于r(A,b),A,B,C都无法判断。D项:r=m时,r(A)=r(A,b)=m,方程组必有解.

  • 第6题:

    设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵


    答案:
    解析:

  • 第7题:

    若非齐次线性方程组中,方程的个数少于未知量的个数,则下列结论中正确的是:

    A.AX=0仅有零解
    B.AX=0必有非零解
    C.AX=0 —定无解
    D.AX=b必有无穷多解

    答案:B
    解析:
    提示Ax=0必有非零解。
    解方程Ax=0时,对系数矩阵进行行的初等变换,必有一非零的r阶子式,而未知数的个数n,n>r,基础解系的向量个数为n-r,所以必有非零解。

  • 第8题:

    设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。

    • A、①②
    • B、①③
    • C、②④
    • D、③④

    正确答案:B

  • 第9题:

    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。

    • A、无解
    • B、只有零解
    • C、有非零解
    • D、不一定

    正确答案:C

  • 第10题:

    填空题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。

    正确答案: ≠0
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第11题:

    单选题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。
    A

    <0

    B

    ≠0

    C

    >0

    D

    =0


    正确答案: A
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第12题:

    单选题
    设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是(  )。
    A

    A的任意m个列向量必线性无关

    B

    A的任一个m阶子式不等于0

    C

    非齐次线性方程组AX()b()一定有无穷多组解

    D

    A通过行初等变换可化为(Em,0)


    正确答案: C
    解析:
    A项和B项,因r(A)=m,则A有m个列向量线性无关或A有m阶子式不为0,但不是任意的;C项,由r(A)=m<n,知方程组AX()b()中有n-m个自由未知数,故其有无穷多解;D项,矩阵A仅仅通过初等行变换是不能变换为矩阵(Em,0)的。

  • 第13题:

    设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).

    A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系
    B.k1ξ1+k1ξ2是Ax=0的通解
    C.k1ξ1+ξ2是Ax=0的通解
    D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

    答案:A
    解析:
    由题设知道,n=5,s=n-r=2,r=3.B不正确,因为k1ξ1+k1ξ2=k1(ξ2+ξ1)只含有一个不定常数,同样理由说明C也不正确.D不正确,因为(ξ1-ξ2)+(ξ1+ξ2)=0,这表明ξ1-ξ2与ξ2-ξ1线性相关.A正确,因为ξ1-ξ2与ξ1+2ξ2都是Ax=0的解,且它 们线性无关,故选A.

  • 第14题:

    若非齐次线性方程组AX=b中,方程的个数少于未知量的个数,则下列结论中正确的是:

    A.AX=0仅有零解
    B.AX=0必有非零解
    C.AX=0—定无解
    D.AX=b必有无穷多解

    答案:B
    解析:
    提示:Ax=0必有非零解。
    ∵在解方程Ax=0时,对系数进行的初等变换,必有一非零的r阶子式,而未知数的个数 n,n>r, 基础解系的向量个数为n-r, ∴必有非零解。

  • 第15题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解


    答案:错
    解析:

  • 第16题:

    设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。

    A.r=n
    B.r<n
    C.r≥n
    D.r>n

    答案:B
    解析:
    Ax=0有非零解的充要条件为|A|=0,即矩阵A不是满秩的,r<n。

  • 第17题:

    设A为m×n阶矩阵,且r(A)=mAA的任意m个列向量都线性无关
    BA的任意m阶子式都不等于零
    C非齐次线性方程组AX=b一定有无穷多个解
    D矩阵A通过初等行变换一定可以化为


    答案:C
    解析:
    显然由r(A)=mm

  • 第18题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第19题:

    设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。



    答案:D
    解析:
    提示:由于线性无关,故R(A)= 1,显然选项A中矩阵秩为3,选项B和C中矩阵秩都为2。

  • 第20题:

    若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。

    • A、Ax=0仅有零解
    • B、Ax=0必有非零解
    • C、Ax=0一定无解
    • D、Ax=b必有无穷多解

    正确答案:B

  • 第21题:

    单选题
    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。
    A

    无解

    B

    只有零解

    C

    有非零解

    D

    不一定


    正确答案: A
    解析: AX=0有非零解的充要条件是R(A)<6,而4×6矩阵的秩R(A)≤4,故AX=0有非零解,故选(C)。

  • 第22题:

    单选题
    设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。
    A

    =0

    B

    ≠0

    C

    =1

    D

    ≠1


    正确答案: B
    解析:
    依据齐次线性方程组性质可知,系数行列式|A|≠0时,方程组仅有零解。

  • 第23题:

    单选题
    设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。
    A

    ①②

    B

    ①③

    C

    ②④

    D

    ③④


    正确答案: B
    解析: 因为①中条件保证了n-r(A)≤n-r(B),所以r(A)≥r(B),而进一步易知③正确,而②、④均不能成立。