设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆 B.矩阵A的迹为零 C.特征值-1,1对应的特征向量正交 D.方程组AX=0的基础解系含有一个线性无关的解向量

题目
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().

A.矩阵A不可逆
B.矩阵A的迹为零
C.特征值-1,1对应的特征向量正交
D.方程组AX=0的基础解系含有一个线性无关的解向量

相似考题
参考答案和解析
答案:C
解析:
由λ1=-1,λ2=0,λ3=1得|A|=0,则r(A)小于3,即A不可逆,(A)正确;又λ1+λ2+λ3=tr(A)=0,所以(B)正确;因为A的三个特征值都为单值,所以A的非零特征值的个数与矩阵A的秩相等,即r(A)=2,从而AX=0的基础解系仅含有一个线性无关的解向量,(D)是正确的;(C)不对,因为只有实对称矩阵的不同特征值对应的特征向量正交,一般矩阵不一定有此性质,所以选(C).
更多“设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().”相关问题
  • 第1题:

    三阶矩阵A的特征值为-2,1,3,则下列矩阵中为非奇异矩阵的是().

    A.2E-A

    B.2E+A

    C.E-A

    D.A-3E


    参考答案:

  • 第2题:

    设A为可逆矩阵,则下列结论不正确的是( )。

    A、(A-1)-1=A
    B、|A-1|=|A|-1
    C、(KA)-1=KA-1(k≠0)
    D、(A')-1=(A-1)'

    答案:C
    解析:
    根据逆矩阵的性质,(A)、(B)、(D)都正确,选项(C)应为

  • 第3题:

    是非奇异矩阵A的特征值,则矩阵(2A3)- 1有一个特征值为:

    A.3
    B.4
    C.
    D.1

    答案:B
    解析:
    提示:利用矩阵的特征值与矩阵的关系的重要结论:设λ为A的特征值,则矩阵

  • 第4题:

    已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是:


    答案:C
    解析:

  • 第5题:

    设λ=1/2是非奇异矩阵A的特征值,则矩阵(2A3)-1有一个特征值为:
    A. 3 B.4 C.1/4 D. 1


    答案:B
    解析:
    提示:利用矩阵的特征值与矩阵的关系的重要结论:设λ为A的特征值,则矩阵kA、aA +bE、A2、Am、A-1 、A*分别有特征值:kλ、aλ+b、λ2、λm、1/λ、 A /λ,且特征向量相同(其中a,b为不等于0的常数,m为正整数)。
    矩阵(2A3)-1对应的特征值应是矩阵2A3对应特征值的倒数,下面求矩阵2A3对应的特征值。已知λ=1/2是非奇异矩阵A的特征值,矩阵A3对应的特征值为矩阵A对应的特征值λ=1/2的三次方(1/2)3 ,矩阵2A3对应的特征值为2(1/2)3 =1/4,从而(2A3)-1对应的特征值为1/(1/4)=4。

  • 第6题:

    设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.


    答案:
    解析:

  • 第7题:

    设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.


    答案:1、1.
    解析:

  • 第8题:

    设A为三阶实对称矩阵,如果二次曲面方程
      
      在正交变换下的标准方程的图形如图所示,
      
      则A的正特征值的个数为

    A.A0
    B.1
    C.2
    D.3

    答案:B
    解析:
    本题把线性代数与解析几何的内容有机的联系起来,首先要明白所给图形是什么曲面?其标准方程是什么?  双叶双曲面,标准方程是:=1其次,二次型经正交变换化为标准形时,其平方项的系数就是A的特征值,所以应选(B).
    很多考生选择(C),是不是把标准方程记成了图1} 而忽略了本题的条件是x^TAx=1.

  • 第9题:

    设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足


    答案:
    解析:

  • 第10题:

    设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是( )。


    A.λ1=0

    B.λ2=0

    C.λ1≠0

    D.λ2≠0

    答案:D
    解析:

  • 第11题:

    已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。

    • A、(2,2,1)T
    • B、(-1,2,_2)T
    • C、(-2,4,-4)T
    • D、(-2,-4,4)

    正确答案:C

  • 第12题:

    单选题
    已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是(  )。[2012年真题]
    A

    2/λ0

    B

    λ0/2

    C

    1/(2λ0

    D

    0


    正确答案: D
    解析:
    由矩阵特征值的性质,2A的特征值为2λ0,因此(2A)1的特征值为1/(2λ0)。

  • 第13题:

    A为三阶矩阵,λ123为其特征值,的充分条件是().

    A.|λ1|=1,|λ2|<<1,|λ3|<1

    B.|λ1|<1,|λ2|=|λ3|=1

    C.|λ1|<1,|λ2|<1,|λ3|<1

    D.|λ1|=|λ2|=|λ3|=1


    参考答案:

  • 第14题:

    设三阶矩阵A:,则A的特征值是:

    A.1,0,1
    B.1,1,2
    C.-1,1,2
    D.1,-1,1

    答案:C
    解析:

  • 第15题:

    设A,B为n阶对称矩阵,下列结论不正确的是().

    A.AB为对称矩阵
    B.设A,B可逆,则A^-1+B^-1为对称矩阵
    C.A+B为对称矩阵
    D.kA为对称矩阵

    答案:A
    解析:

  • 第16题:

    设A,B为三阶矩阵,且特征值均为-2,1,1,以下命题:
      (1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().

    A.1个
    B.2个
    C.3个
    D.4个

    答案:B
    解析:
    因为A,B的特征值为-2,1,1,所以|A|=|B|=-2,又因为r(A)=r(B)=3,所以A,B等价,但A,B不一定相似或合同,选(B).

  • 第17题:

    设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,
      对应特征向量为(-1,0,1)^T.
      (1)求A的其他特征值与特征向量;
      (2)求A.


    答案:
    解析:

  • 第18题:

    设A=(α1,α2,α3)为3阶矩阵.若α1,α2线性无关,且α3=-α1+2α1,则线性方程组Ax=0的通解为________.


    答案:
    解析:

    1、k(1,-2,1)^T,k为任意常数

  • 第19题:

    设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=________.


    答案:1、-1.
    解析:

  • 第20题:

    已知矩阵A=



    的两个特征值为λ1=1,λ2=3,则常数a和另一特征值λ3为(  )。

    A、 a=1,λ3=-2
    B、 a=5,λ3=2
    C、 a=-1,λ3=0
    D、 a=-5,λ3=-8

    答案:B
    解析:
    矩阵A的特征行列式和特征方程具体计算如下:



    将λ1=1代入特征方程,解得:a=5;由特征值性质:λ1+λ2+λ3=5-4+a,得λ3=2。

  • 第21题:

    设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是(  )。

    A、λ1=0
    B、λ2=0
    C、λ1≠0
    D、λ2≠0

    答案:D
    解析:

  • 第22题:

    设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。
    A. α是矩阵-2A的属于特征值-2λ的特征向量

    D. α是矩阵AT的属于特征值λ的特征向量


    答案:D
    解析:
    提示:显然A、B、C都是正确的。

  • 第23题:

    单选题
    设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()
    A

    α1-α2是A的属于特征值1的特征向量

    B

    α1-α3是A的属于特征值1的特征向量

    C

    α1-α3是A的属于特征值2的特征向量

    D

    α1+α2+α3是A的属于特征值1的特征向量


    正确答案: A
    解析: 暂无解析