更多“设X,Y相互独立且都服从分布N(0,4),则( ). ”相关问题
  • 第1题:

    设随机变量X和Y都服从正态分布,则().

    A.X+Y一定服从正态分布
    B.(X,Y)一定服从二维正态分布
    C.X与Y不相关,则X,Y相互独立
    D.若X与Y相互独立,则X-Y服从正态分布

    答案:D
    解析:
    若X,Y独立且都服从正态分布,则X,Y的任意线性组合也服从正态分布,选(D).

  • 第2题:

    设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则



    答案:B
    解析:
    【简解】首先应看到,X+Y和X-Y均为一维正态分布的随机变量.其次要看到,如果z~N(μ,σ^2),则,反之,如果,则必有a=μ.因为正态分布的概率密度有对称性.有考生在求解过程中将X+Y和X-Y都进行标准化,更有考生把X+Y和X-Y都看成二维正态随机变量的函数来求解,就更复杂化了.

  • 第3题:

    设X,Y相互独立且都服从标准正态分布,则E|X-Y|=_______,D|X-Y|=_______.


    答案:
    解析:

  • 第4题:

    设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明:为参数σ^2的无偏估计量,


    答案:
    解析:

  • 第5题:

    设X,Y相互独立且都服从(0,2)上的均匀分布,令Z=min{X,Y},则P(0

    答案:
    解析:
    由X,Y在(0,2)上服从均匀分布得  
    因为x,Y相互独立,所以
      Fz(z)=P(Z≤z)=1-P(Z>z)=1-P(min{X,Y)}>z)=1-P(X>z,Y>z)
      =1-P(X>z)P(Y>z)=1=【1-P(X≤z)】【1-P(Y≤z)】
      =1-【1-Fx(z)】【1-FY(z)】,

  • 第6题:

    设随机变量X,Y相互独立,且X~N(0,4),Y的分布律为Y~.则P(X-1-2Y≤4)=_______.


    答案:1、0.46587
    解析:
    p(X+2Y≤4)=P(Y=1)P(X≤4-2Y|Y=1)+P(Y=2)P(X≤4-2Y|Y=2)+P(Y=3)P(X≤4-2Y|Y=3)

  • 第7题:

    设随机变量X,Y相互独立,且X~N(μ,σ2),Y在[a,b]区间上服从均匀分布,则D(X-2Y)=()。



    答案:A
    解析:

  • 第8题:

    设随机变量X与Y相互独立且都服从区间[0,1]上的均匀分布,则下列随机变量中服从均匀分布的有()。

    • A、X2
    • B、X+Y
    • C、(X,Y)
    • D、X-Y

    正确答案:C

  • 第9题:

    X,Y相互独立,且都服[0,1]上的均匀分布,则服从均匀分布的是().

    • A、(X,Y)
    • B、XY
    • C、X+Y
    • D、X-Y

    正确答案:A

  • 第10题:

    若随机变量X~N(0,4),Y~N(-1,5),且X与Y相互独立。设Z=X+Y-3,则Z~()。


    正确答案:N(-4,9)

  • 第11题:

    设X,Y相互独立,且都服从标准正态分布N(0,1),令Z=X2+Y2则Z服从的分布是().

    • A、N(0,2)分布
    • B、单位圆上的均匀分布
    • C、参数为1的瑞利分布
    • D、N(0,1)分布

    正确答案:C

  • 第12题:

    单选题
    若随机向量(X,Y)服从二维正态分布,则(  )。[2018年10月真题]Ⅰ.X,Y一定相互独立Ⅱ.若ρXY=0,则X,Y一定相互独立Ⅲ.X和Y都服从一维正态分布Ⅳ.若X,Y相互独立,则Cov(X,Y)=0
    A

    Ⅰ、Ⅲ

    B

    Ⅰ、Ⅲ、Ⅳ

    C

    Ⅱ、Ⅲ、Ⅳ

    D

    Ⅱ、Ⅳ


    正确答案: B
    解析:
    Ⅰ、Ⅱ项,对于二维正态随机变量(X,Y),X和Y相互独立的充要条件是参数ρXY=0。Ⅲ项,若随机向量(X,Y)服从二维正态分布,则X和Y都服从一维正态分布,但反之不一定。Ⅳ项,若X,Y相互独立,E(XY)=E(X)E(Y),则Cov(X,Y)=E(XY)-E(X)E(Y)=0。

  • 第13题:

    设(X,Y)服从二维正态分布,则下列说法不正确的是().



    A.X,Y一定相互独立
    B.X,y的任意线性组合l1X+l2y(l1,l2不全为零)服从正态分布
    C.X,y都服从正态分布
    D.ρ=0时X,y相互独立

    答案:A
    解析:
    因为(X,Y)服从二维正态分布,所以(B),(C),(D)都是正确的,只有当ρ=0时,X,Y才相互独立,所以选(A).

  • 第14题:

    设随机变量X,Y都是正态变量,且X,Y不相关,则( ).


    A.X,Y一定相互独立
    B.(X,Y)一定服从二维正态分布
    C.X,y不一定相互独立
    D.X+y服从一维正态分布


    答案:C
    解析:
    只有当(X,Y)服从二维正态分布时,X,Y独立才与X,Y不相关等价,由X,Y仅仅是正态变量且不相关不能推出X,Y相互独立,(A)不对;若X,Y都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但X,Y不一定相互独立,(B)不对;当X,Y相互独立时才能推出X,Y服从一维正态分布,(D)不对,故选(C)

  • 第15题:

    设二维随机变量(X,Y)服从二维正态分布,且X~N(1,3^2),Y~N(0,4^2),且X,Y的相
      关系数为-,又设Z=
    (1)求E(Z),D(Z);(2)求;(3)X,Z是否相互独立?为什么?


    答案:
    解析:
    【解】(1)

    (2)
    (3)因为(X,Y)服从二维正态分布,所以Z服从正态分布,同时X也服从正态分布,又X,
    Z不相关,所以X,Z相互独立.

  • 第16题:

    设总体X,Y相互独立且服从N(0,9)分布,(X1,…,X9)与(Y1,…,Y9)分别为来自总体X,Y的简单随机样本,则U=~_______.


    答案:1、t(9)
    解析:

  • 第17题:

    设随机变量X,Y相互独立且都服从二项分布B(n,p),则P{min(X,Y)=0}=_______.


    答案:
    解析:
    令A=(X=0),B=(Y=0),则P{min(X,Y)=0)=P(A+B)=P(A)+P(B)-P(AB)

  • 第18题:

    设U,~N(μ,1),V~χ^2(n),且U,V相互独立,则T=服从_______分布.


    答案:1、t(n)
    解析:
    由U~N(μ,1),得,又U,V相互独立,则.

  • 第19题:

    设随机变量X和Y相互独立,都服从正态分布N(0,1/2),则Y−X的方差为()。

    • A、1-1/π
    • B、1-2/π
    • C、1
    • D、2
    • E、4

    正确答案:B

  • 第20题:

    设(X,Y)服从二维正态分布,则cov(X,Y)=0是X与Y相互独立的()条件。


    正确答案:充要

  • 第21题:

    若随机变量X与Y相互独立,且X服从N(1,9),Y服从N(2,6),则X+Y服从()分布。


    正确答案:N(3,25)

  • 第22题:

    设随机变量X,Y相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是()。

    • A、XY
    • B、(X,Y)
    • C、X—Y
    • D、X+Y

    正确答案:B

  • 第23题:

    单选题
    若随机向量(X,Y)服从二维正态分布,则(  )。Ⅰ.X,Y一定相互独立Ⅱ.若ρXY=0,则X,Y一定相互独立Ⅲ.X和Y都服从一维正态分布Ⅳ.若X,Y相互独立,则Cov(X,Y)=0
    A

    Ⅰ、Ⅲ

    B

    Ⅰ、Ⅲ、Ⅳ

    C

    Ⅱ、Ⅲ、Ⅳ

    D

    Ⅱ、Ⅳ


    正确答案: A
    解析:
    Ⅰ、Ⅱ项,对于二维正态随机变量(X,Y),X和Y相互独立的充要条件是参数ρXY=0。Ⅲ项,若随机向量(X,Y)服从二维正态分布,则X和Y都服从一维正态分布,但反之不一定。Ⅳ项,若X,Y相互独立,E(XY)=E(X)E(Y),则Cov(X,Y)=E(XY)-E(X)E(Y)=0。