设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵 B.A有不为0的特征值 C.A的特征值全为0 D.A有n个线性无关的特征向量

题目
设A是n阶矩阵,且Ak=O(k为正整数),则( )。

A.A一定是零矩阵
B.A有不为0的特征值
C.A的特征值全为0
D.A有n个线性无关的特征向量

相似考题
更多“设A是n阶矩阵,且Ak=O(k为正整数),则( )。”相关问题
  • 第1题:

    设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

    A.r>m
    B.r=m
    C.rD.r≥m

    答案:C
    解析:
    显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

  • 第2题:

    设A,B皆为n阶矩阵,则下列结论正确的是().

    A.AB=O的充分必要条件是A=O或B-O
    B.AB≠O的充分必要条件是A≠0且B≠0
    C.AB=O且r(A)=N,则B=O
    D.若AB≠0,则|A|≠0或|B|≠0

    答案:C
    解析:

  • 第3题:

    设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。



    答案:A
    解析:
    已知(AB)2=I,即ABAB=I,说明矩阵A可逆,且A-1=BAB,用A右乘上式两端即可得解

  • 第4题:

    设n阶矩阵A满足(aE-A)(bE-A)=O且a≠6.证明:A可对角化.


    答案:
    解析:
    【证明】由(aE-A)(bE-A)=O,得|aE-A|·|bE-A|=0,则|aE-A|=0或者
    |bE-A|=0.又由(aE-A)(bE-A)=O,得r(aE-A)+r(bE-A)≤n.
    同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n,
    所以r(aE-A)+r(bE-A)=n.
    (1)若|aE-A|≠0,则r(aE-A=n,所以r(bE-A)=0,故A=bE.
    (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE.
    (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值.
    方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个;
    方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个.
    因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.

  • 第5题:

    设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.


    答案:
    解析:

  • 第6题:

    设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.


    答案:
    解析:

  • 第7题:

    设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n,


    答案:
    解析:

  • 第8题:

    设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.


    答案:1、0
    解析:
    ,因为B的列向量为方程组的解且B≠0,所以AB=0且方程组有非零解,故|A|=0,解得k=1.因为AB=O,所以r(A)+r(B)≤3且r(A)≥1,于是r(B)≤2小于3,故|B|=0.

  • 第9题:

    都是n(n≥3)阶非零矩阵,且AB=O,则r(B)=( )

    A. 0
    B.1
    C. 2
    D. 3

    答案:B
    解析:

  • 第10题:

    设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).



    答案:D
    解析:

  • 第11题:

    填空题
    设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为____.

    正确答案: X=k(1,1…,1)T
    解析:
    由r(A)=n-1,知方程组AX=0的基础解系只含有n-(n-1)=1个解向量.又矩阵A的各行元素之和为0,知(1,1,…,1)T,为AX=0的非零解,则方程组AX=0的通解为X=k(1,1…,1)T

  • 第12题:

    问答题
    设A是n阶矩阵,若存在正整数k,使线性方程组Akx(→)=0(→)有解向量α,且Ak-1α(→)≠0(→),证明:向量组α(→),Aα(→),…,Ak-1α(→)是线性无关的。

    正确答案:
    根据定义可设l0α()+l1Aα()+…+lk-1Ak-1α()=0()
    当k≥2时,左乘Ak-1得到l0Ak-1α()+l1Akα()+…+lk-1A2k-2α()=0(),因为Akα()=0(),则l0Ak-1α()=0(),但Ak-1α()0(),则l0=0,l1Aα()+…+lk-1Ak-1α()=0()
    类似,依次左乘Ak-2,Ak-3,…,得到l1=…=lk-1=0,因此当k≥2时,α(),Aα(),…,Ak-1α()线性无关。
    当k=1时,Ak-1α()0(),则α()0(),向量α()线性无关。
    综上,向量组α(),Aα(),…,Ak-1α()是线性无关的。
    解析: 暂无解析

  • 第13题:

    设A,B都是,n阶矩阵,其中B是非零矩阵,且AB=O,则().

    A.r(B)=n
    B.r(B)C.A2-Bz=(A+B)(A-B)
    D.|A|=0

    答案:D
    解析:
    因为AB=O,所以r(A)+r(B)≤n,又因为B是非零矩阵,所以r(B)≥1,从而r(A)小于n,于是|A|=0,选(D).

  • 第14题:

    设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=O与ABX=O同解的充分条件是().

    A.r(A)=s
    B.r(A)=m
    C.r(B)=s
    D.r(B)=n

    答案:A
    解析:
    设r(A)=s,显然方程组BX=0的解一定为方程组ABX=0的解,反之,若ABX=0,因为r(A)=s,所以方程组AY=0只有零解,故BX=0,即方程组BX=0与方程组ABX=0同解,选(A).

  • 第15题:

    设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


    答案:1、2
    解析:
    因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

  • 第16题:

    设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.


    答案:
    解析:

  • 第17题:

    设A为n阶非零矩阵,且存在自然数k,使得A^k=O.证明:A不可以对角化.


    答案:
    解析:

  • 第18题:

    设A,B为n阶矩阵,且r(A)+r(B)

    答案:
    解析:

  • 第19题:

    设A=,且存在三阶非零矩阵B,使得AB=O,则a=_______,b=_______.


    答案:1、2 2、1
    解析:
    ,因为AB=O,所以r(A)+r(B)≤3,又B≠O,于是r(B)≥1,故r(A)≤2,从而a=2,b=1.

  • 第20题:

    设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于


    答案:D
    解析:
    这是一道常见的基础题,由Aα=λα,α≠0知A^nα=λ^nα,那么对于A^2+A=0(λ^2+λ)α=0λ^2+λ=0所以A的特征值只能是0或-1再由A是实对称必有A~A,而A即是A的特征值,那么由r(A)=3,可知(D)正确

  • 第21题:

    设a为N阶可逆矩阵,则( ).《》( )


    答案:C
    解析:

  • 第22题:

    填空题
    设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

    正确答案: -1
    解析:
    由矩阵B是矩阵A的逆矩阵,所以有AB=E。从而(E-α()α()T)(E+α()α()T/a)=E-α()α()Tα()α()T/a-α()α()Tα()α()T/a=E,即α()α()T(1/a-1-2a2/a)=0。
    由于α()α()T≠0,故1/a-1-2a2/a=0,又因a<0,可得a=-1。

  • 第23题:

    填空题
    设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

    正确答案: -(A+E)/2
    解析:
    由题设A2=A有,A2-A-2E=(A-2E)(A+E)=-2E,即(A-2E)[-(A+E)/2]=E,所以有(A-2E)1=-(A+E)/2。