参考答案和解析
答案:D
解析:
更多“质量为m,长为2l的均质杆初始位于水平位置, 如图所示。A端脱落后,杆绕轴B转动,当杆转到铅垂位置时,AB 杆B处的约束力大小为: ”相关问题
  • 第1题:

    均质杆OA,重P,长l,可在铅直平面内绕水平固定轴O转动。杆在图示铅直位置时静止,欲使杆转到水平位置,则至少要给杆的角速度是(  )。


    答案:B
    解析:
    运动过程中只有重力做功,根据动能定理得

  • 第2题:

    质量不计的水平细杆AB长为L,在铅垂图面内绕A轴转动,其另一段固连质量为m的质点B,在图示水平位置静止释放,则此瞬时质点B的惯性力为(  )。



    答案:A
    解析:
    质点惯性力的大小等于质点的质量与加速度的乘积。在水平位置静止释放的瞬时速度和角速度都为0,因此质点只有一个重力加速度g,惯性力的大小为mg。

  • 第3题:

    均质细杆AB重力为P、长2L,A端铰支,B端用绳系住,处于水平位置,如图所示,当B端绳突然剪断瞬时,AB杆的角加速度大小为:



    答案:B
    解析:

  • 第4题:

    均质细杆重力为P、长2L,A端铰支,B端用绳系住,处于水平位置,如图所示。当B端绳突然剪断瞬时,AB杆的角加速度大小为:



    答案:B
    解析:
    提示:可用动静法,将惯性力向A点简化。

  • 第5题:

    图示均质杆AB的质量为m,长度为L,且O1A = O2B=R,O1O2=AB=L。当φ=60°时,O1A杆绕O1轴转动的角速度为ω,角加速度为α,此时均质杆AB的惯性力系向其质心C简化的主矢FI和主矩MIC的大小分别为:


    A. FI=mRα ,MI
    B=1/3mL2α
    C. FI=mRω2 ,MI
    D = 0


    答案:C
    解析:
    提示:AB是平动刚体。

  • 第6题:

    均质细杆AB重力为P,长为2l,A端铰支,B端用绳系住,处于水平位置,如图所示。当B端绳突然剪断瞬时,AB杆的角加速度大小为3g/4l,则A处约束力大小为:

    A. FAx= 0,FAy=0 B. FAx= 0,FAy=P/4 C. FAx= P,FAy=P/2 D.FAx= 0,FAy=P


    答案:B
    解析:

  • 第7题:

    均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度α绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:



    答案:A
    解析:
    提示:根据定轴转动刚体的动量矩定义LO=JOω,JO=JOA+JAB。

  • 第8题:

    均质杆OA长L,可在铅直平面内绕水平固定轴O转动。开始杆处在如图所示的稳定平衡位置。今欲使此杆转过1/4转而转到水平位置,应给予杆的另一端A点的速度vA的大小为:



    答案:D
    解析:
    提示:应用动能定理,T2 - T1 = W12。

  • 第9题:

    如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。


    答案:B
    解析:

  • 第10题:

    T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:



    答案:C
    解析:
    提示:动量 p=∑mivci=(2m?lω+m?2lω)j。

  • 第11题:

    质量为m,长为2l的均质细杆初始位于水平位置,如图4-68所示。A端脱落后, 杆绕轴B转动,当杆转到铅垂位置时,AB杆B处的约束力大小为( )。



    答案:D
    解析:
    提示:根据动能定理,当杆转动到铅垂位置时,杆的ω2=3g/2l,α=0,根据质心运动定理mlω2=FBy-mg,FBx=0。

  • 第12题:

    均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图4-69所示, 则AB杆的动能为( )。



    答案:D
    解析:
    提示:定轴转动刚体的动能为T = 1/2JOω2。

  • 第13题:

    匀质杆质量为m,长OA=l,在铅垂面内绕定轴o转动。杆质心C处连接刚度系数是较大的弹簧,弹簧另端固定。图示位置为弹簧原长,当杆由此位置逆时针方向转动时,杆上A点的速度为VA,若杆落至水平位置的角速度为零,则vA的大小应为:


    答案:D
    解析:

  • 第14题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:



    答案:D
    解析:

  • 第15题:

    图示均质杆AB的质量为m,长度为L,且O1A = O2B=R,O1O2=AB=L。当φ=60°时,O1A杆绕O1轴转动的角速度为ω,角加速度为α,此时均质杆AB的惯性力系向其质心C简化的主矢FI和主矩MIC的大小分别为:

    A. FI=mRα ,MIC=1/3mL2α B. FI=mRω2 ,MIC = 0


    答案:C
    解析:
    提示:AB是平动刚体。

  • 第16题:

    均质杆AB长为l,重为W,受到如图所示的约束,绳索ED处于铅垂位置,A、B两处为光滑接触,杆的倾角为α,又CD = l/4,则 A、B两处对杆作用的约束力大小关系为:

    A. FNA=FNB= 0 B. FNA=FNB≠0 C. FNA≤FNB D.FNA≥FNB


    答案:B
    解析:
    提示:A、B处为光滑约束,其约束力均为水平并组成一力偶,与力W和DE杆约束力组成的力偶平衡。

  • 第17题:

    图示均质细直杆AB长为l,质量为m,图示瞬时A点的速度为则AB杆的动量大小为:



    答案:D
    解析:
    质点系动量:,为各质点动量的矢量和,图示杆的质心在杆中端。

  • 第18题:

    质量为m,长为2l的均质细杆初始位于水平位置,如图所示。A端脱落后,杆绕轴B 转动,当杆转到铅通位置时,AB杆角加速度的大小为:


    答案:C
    解析:
    解:选C
    报据机械能守恒定律,在等式两边对初始和最终时刻的两祌情形列出动能和势能,再求解即可得到答案。

  • 第19题:

    均质细杆重P,长2L,A端铰支,B端用绳系住,处于水平位置,如图所示。当B


    答案:B
    解析:

  • 第20题:

    匀质杆AB 长l ,质量为m,质心为C。点D 距点A 为1/4,杆对通过点D 且垂直于AB 的轴y 的转动惯量为:



    答案:A
    解析:
    转动惯量,又称惯性矩(俗称惯性力距、易与力矩混淆),通常以 I 表示,SI 单位为 kg * m2,可说是一个物体对于旋转运动的惯性。对于一个质点,I = mr2,其中 m 是其质量,r 是质点和转轴的垂直距离。

  • 第21题:

    均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为:


    答案:D
    解析:

  • 第22题:

    均质细直杆长为l,质量为m,图示瞬时点A处的速度为v,则杆AB的动量大小为:


    答案:D
    解析:
    提示 动量的大小等于杆AB的质量乘以其质心速度的大小。

  • 第23题:

    均质细杆AB重力为P、长2L, A端铰支,B端用绳系住,处于水平位置,如图4-73所示。当B端绳突然剪断瞬时AB杆的角加速度大小为()。

    A.0 B.3g/4L C.3g/2L D.6g/L


    答案:B
    解析:
    提示:可用动静法,将惯性力向A点简化。