半径R=10cm的鼓轮,由挂在其上的重物带动而绕O轴转动,如图所示。重物的运动方程为x= 100t2(x以m计,t以s计)。则鼓轮的角加速度α的大小和方向是:A.α=2000rad/s2,顺时针向 B. α==2000rad/s2,逆时针向 C.α=200rad/s2,顺时针向 D. α==200rad/s2,逆时针向

题目
半径R=10cm的鼓轮,由挂在其上的重物带动而绕O轴转动,如图所示。重物的运动方程为x= 100t2(x以m计,t以s计)。则鼓轮的角加速度α的大小和方向是:


A.α=2000rad/s2,顺时针向
B. α==2000rad/s2,逆时针向
C.α=200rad/s2,顺时针向
D. α==200rad/s2,逆时针向

相似考题
更多“半径R=10cm的鼓轮,由挂在其上的重物带动而绕O轴转动,如图所示。重物的运动方程为x= 100t2(x以m计,t以s计)。则鼓轮的角加速度α的大小和方向是: ”相关问题
  • 第1题:

    图示均质圆轮,质量m,半径R,由挂在绳上的重为W的物块使其绕质心轴O转动。设重物的速度为v,不计绳重,则系统动量、动能的大小是(  )。




    答案:A
    解析:

  • 第2题:

    两重物的质量均为m,分别系在两软绳上。此两绳又分别绕在半径各为r与2r并固结在一起的两轮上。两圆轮构成之鼓轮的质量亦为m,对轴O的回转半径为ρO。两重物中一铅垂悬挂,一置于光滑平面上。当系统在左重物重力作用下运动时,鼓轮的角加速度α为:



    答案:A
    解析:

  • 第3题:

    在两个半径及质量均相同的均质滑轮A及B上,各绕一不计质量的绳,如图所示,轮B绳末端挂一重量为P的重物;轮A绳末端作用一铅垂向下的力P。则此两轮的角加速度大小之间的关系为(  )。


    答案:B
    解析:

  • 第4题:

    图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆轮中心O的水平轴以匀角速度ω转动。则系统动量、对中心O的动量矩、动能的大小为:



    答案:A
    解析:
    提示:根据动量、动量矩、动能的定义,刚体做定轴转动时p=mvc, LO=JOω,T=1/2JOω2。

  • 第5题:

    图示鼓轮半径r=3.65m,对转轴O的转动惯量JO= 0.92kg ? m2;绕在鼓轮上的绳端挂有质量m=30kg的物体A。不计系统质量与摩擦,欲使鼓轮以角加速度α=37.8rad/s2转动来提升重物,需对鼓轮作用的转矩M的大小是:

    A. 37.8N ? m B. 47N ? m
    C. 36.3N ? m D. 45.5N ? m


    答案:B
    解析:
    提示:动量矩定理(JO +mr2 )α=M-mgr。

  • 第6题:

    图4-67示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆轮中心O的水平轴以匀角速度ω转动。则系统动量、对中心O的动量矩、动能的大小为( )。



    答案:A
    解析:
    提示:根据动量、动量矩、动能的定义,刚体作定轴转动时,ρ = mvc、LO= JOω, T=1/2JOω2。

  • 第7题:

    点M在曲线AOB上运动。曲线由AO、OB两段圆弧组成。AO段曲率半径R1=18m,OB段曲率半径R2=24m,取两圆弧交接点O为原点,并规定正负方向如图示。已知点M的运动方程为s=3+4t-t2(t以秒计,s以米计),则t=5秒时点M的加速度大小为()。

    • A、1.5m/s2
    • B、2m/s2
    • C、2m/s2
    • D、4m/s2

    正确答案:C

  • 第8题:

    单选题
    物体作定轴转动的运动方程为φ=4t-3t2(φ以rad计,t以s计)。此物体内,转动半径r=0.5m的一点,在t0=0时的速度和法向加速度的大小为(  )。[2012年真题]
    A

    2m/s,8m/s2

    B

    3m/s,3m/s2

    C

    2m/s,8.54m/s2

    D

    0,8m/s2


    正确答案: D
    解析:
    物体转动的角速度为:ω=dφ/dt=4-6t,则当t0=0时,ω0=4(rad/s)。故所求点的速度v0=rω0=0.5×4=2m/s,加速度a0=rω02=0.5×42=8m/s2

  • 第9题:

    如图,半径为R的圆轮以匀角速度作纯滚动,带动AB杆绕B作定轴转动,D是轮与杆的接触点,如图所示。若取轮心C为动点,杆BA为动坐标系,则动点的牵连速度为(  )。


    答案:C
    解析:

  • 第10题:

    小车沿水平方向向右做加速运动,其加速度a0=49.2cm/s2,在小车上有一轮绕O轴转动,转动规律为φ=t2(t以秒计,φ以弧度计)。当t=1s时.轮缘上点A的位置如图所示。如轮的半径r=20cm,求此时点A的绝对加速度aA为( )cm/s2。



    A.24.7
    B.43.5
    C.68.2
    D.74.6


    答案:D
    解析:
    牵连运动为平动

  • 第11题:

    两重物的质量均为m,分别系在两软绳上,此两绳又分别绕在半径各为r与2r并固结一起的两圆轮上,两圆轮构成之鼓轮的质量亦为m,对轴O的回转半径为p0,两重物中一铅垂悬挂,一置于光滑平面上,当系统在左重物重力作用下运动时,鼓轮的角加速度a为:



    答案:A
    解析:
    均匀细直杆对一端的转动惯量:
    均匀细直杆对垂直与杆的中心轴的转动惯量:
    匀质圆板对垂直于板的中心轴的转动惯量:
    惯性半径:
    作受力分析,下降的重物:mg-T1=ma1,水平方向上的重物T2=ma2;
    又 a1 = 2ar, a2 = ar。再根据动量矩定理,联列以上方程得选项(A)。

  • 第12题:

    质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为w。在图示瞬时,角加速度为O,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:




    答案:A
    解析:
    根据定义,惯性力系主矢的大小为:



    主矩的大小为:Joα=0。

  • 第13题:

    物体作定轴转动的运动方程为φ=4t-3t2(φ以rad计,t以s计)此物体内,转动半径r=0.5m的一点在to=0时的速度和法向加速度的大小为()。

    A.2 m/s,8 m/s2
    B.3 m/s,3 m/s2
    C.2 m/s,8.54m/s2
    D.0.8 m/s2

    答案:A
    解析:
    提示 根据转动刚体内一点的速度和加速度公式:v=rw,an=rw2,且w=φ。@##

  • 第14题:

    点作直线运动,其运动方程为x=27t-t3,式中x以m计,t以s计。则点在t=0到t=7s时间间隔内走过的路程为()m。


    正确答案:262

  • 第15题:

    单选题
    (2012)物体作定轴转动的运动方程为φ=4t-3t2(φ以rad计,t以s计)此物体内,转动半径r=0.5m的一点,在t0=0时的速度和法向加速度的大小分别为:()
    A

    2m/s,8m/s2

    B

    3m/s,3m/s2

    C

    2m/s,8.54m/s2

    D

    0,8m/s2


    正确答案: A
    解析: 暂无解析

  • 第16题:

    单选题
    图示鼓轮半径r=3.65m,对转轴O的转动惯量Jo=0.92kg·m 2;绕在鼓轮上的绳端挂有质量m=30kg的物体A。不计系统质量与摩擦,欲使鼓轮以角加速度α=37.8rad/s2转动来提升重物,需对鼓轮作用的转矩M的大小是:()
    A

    37.8N.m

    B

    47N.m

    C

    36.3N.m

    D

    45.5N.m


    正确答案: C
    解析: 暂无解析