更多“一半径为r的圆盘以匀角速ω在半径为R的圆形曲面上作纯滚动(如图所示), 则圆盘边缘上图示M点加速度aM的大小为:”相关问题
  • 第1题:

    图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为ω,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。




    答案:C
    解析:

  • 第2题:

    均质圆盘质量为m,半径为R,在铅垂平面内绕O轴转动,图示瞬时角速度为ω,则其对O轴的动量矩和动能大小分别为:



    答案:D
    解析:
    提示 根据定轴转动刚体动量矩和动能的公式LO= JOω, T=1/2JOω2 。

  • 第3题:

    如图所示,曲柄OA长R,以匀角速度ω绕O轴转动,均质圆轮B在水平面上做纯滚动,其质量为m,半径为r。在图示瞬时,OA杆铅直。圆轮B对接触点C的动量矩为(  )mRrω。

    A.0.5
    B.1.0
    C.1.5
    D.2.0

    答案:B
    解析:
    图示瞬时,点A和点B的速度方向均沿水平方向, AB杆作平动,圆轮B的轮心速度

  • 第4题:

    如图,半径为R的圆轮以匀角速度作纯滚动,带动AB杆绕B作定轴转动,D是轮与杆的接触点,如图所示。若取轮心C为动点,杆BA为动坐标系,则动点的牵连速度为(  )。


    答案:C
    解析:

  • 第5题:

    质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为ω,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化, 其惯性力主矢和惯性力主矩的大小分别为:



    答案:A
    解析:
    提示 根据定轴转动刚体惯性力系简化的主矢和主矩结果,其大小为FI= mac;MIO=JOα。

  • 第6题:

    一半径为r的圆盘以匀角速ω在半径为R的圆形曲面上作纯滚动(如图所示), 则圆盘边缘上图示M点加速度aM的大小为:



    答案:B
    解析:

  • 第7题:

    平板A以匀速v沿水平直线向右运动;质量为m、半径为r的均质圆轮B,在平板上以匀角速ω以顺时针方向沿水平直线滚而不滑(如图所示)。则圆轮的动能TB的表达式为下列哪一式?



    答案:C
    解析:
    提示:应用刚体运动的动能公式计算。

  • 第8题:

    匀质圆轮重力为W,其半径为r,轮上绕以细绳,绳的一端固定于A点,如图所示。当圆轮下降时,轮心的加速度ac和绳子的拉力T的大小分别为:



    答案:A
    解析:
    提示:应用平面运动微分方程得:Jcα=Mc(F);mac=∑F。

  • 第9题:

    从一个质量均匀分布的半径为R的圆盘中挖出一个半径为R/2的小圆盘,两圆盘中心的距离恰好也为R/2。如以两圆盘中心的连线为x轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x坐标应为()

    • A、R/4
    • B、R/6
    • C、R/8
    • D、R/12

    正确答案:B

  • 第10题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:



    答案:D
    解析:

  • 第11题:

    均质圆盘质量为m,半径为R,在铅垂面绕内O轴转动,图示瞬间角速度为ω,则其对O轴的动量矩大小为(  )。

    A.mRω
    B.mRω/2
    C.mR2ω/2
    D.3mR2ω/2

    答案:D
    解析:
    根据质点的动量矩公式,体系对O点的动量矩为:

  • 第12题:

    均质圆盘重W,半径为R,绳子绕过圆盘,两端各挂重Q和P的物块,绳与盘之间无相对滑动,且不计绳重,则圆盘的角加速度为(  )。



    答案:D
    解析:

  • 第13题:

    忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动。系统的动能是:


    答案:D
    解析:
    提示 圆盘绕轴O作定轴转动,其动能为T=1/2JOω2。

  • 第14题:

    半径为R、质量为m的均质圆轮沿斜面做纯滾动如图所示。已知轮心C的速度为v、加速度为a,则该轮的动能为:



    答案:C
    解析:

  • 第15题:

    质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为ω,在图4-78示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为()。



    答案:A
    解析:
    提示:根据定轴转动刚体惯性力系简化的主矢和主矩结果,其大小FI=maC,MIO=JOα。

  • 第16题:

    偏心轮为均质圆盘,其质量为m,半径为R,偏心距OC=R/2。若在图示位置时,轮绕O轴转动的角速度为ω,角加速度为α,则该轮的惯性力系向O点简化的主矢FI和主矩MIO的大小为:



    答案:A
    解析:
    提示:MIO=-JOα,其中 JO = JC + m* OC2 。

  • 第17题:

    一匀质圆盘的惯性半径等于圆盘的半径。


    正确答案:错误