阅读以下说明和流程图,回答问题将解答填入对应栏。[说明]本流程图实现采用递归函数来求一个整数数组中从元素0到元素n中的最小值。该算法思想是这样的,首先我们假设有一个求数组中最小元素的函数,然后,在求某一具有n的元素的数组的最小值时,只要求将前n-1的元素的最小值与第n个元素比较即可。不断地重复这一过程,直到数组中只剩下一个元素,那么它必定是最小值。注:int min(int X,int y)为返回两数中最小数的函数。int minInArray(int a[],int n)为返回数组中最小数的函数。min

题目

阅读以下说明和流程图,回答问题将解答填入对应栏。

[说明]

本流程图实现采用递归函数来求一个整数数组中从元素0到元素n中的最小值。该算法思想是这样的,首先我们假设有一个求数组中最小元素的函数,然后,在求某一具有n的元素的数组的最小值时,只要求将前n-1的元素的最小值与第n个元素比较即可。不断地重复这一过程,直到数组中只剩下一个元素,那么它必定是最小值。

注:int min(int X,int y)为返回两数中最小数的函数。

int minInArray(int a[],int n)为返回数组中最小数的函数。

minA为数组中最小值。

[问题l]

将流程图的(1)~(4)处补充完整。

[问题2]

min()函数的定义为(5)。


相似考题
更多“ 阅读以下说明和流程图,回答问题将解答填入对应栏。[说明]本流程图实现采用递归函数来求一个整数数组中从元素0到元素n中的最小值。该算法思想是这样的,首先我们假设有一个求数组中最小元素的函数,然后,在求某一具有n的元”相关问题
  • 第1题:

    试题三(共15分)

    阅读以下说明和C函数,回答问题 l和问题 2,将解答填入答题纸的对应栏内。

    【说明】

    对于具有n个元素的整型数组a,需要进行的处理是删除a中所有的值为 0的数组元素,并将a中所有的非 O元素按照原顺序连续地存储在数组空间的前端。下面分别用函数CompactArr_v1 和CompactArr v2来实现上述处理要求,函数的返回值为非零元素的个数。 函数CompactArr_vl(int a[],int n)的处理思路是:先申请一个与数组a的大小相同的动态数组空间,然后顺序扫描数组a的每一个元素,将遇到的非O元素依次复制到动态数组空间中,最后再将动态数组中的元素传回数组a中。

    函数CompactArr_v2(int a[],int n)的处理思路是:利用下标i(初值为 0)顺序扫描数组a的每一个元素,下标k(初值为0)表示数组 a中连续存储的非0元素的下标。扫描时,每遇到一个数组元素,i就增 1,而遇到非 0元素并将其前移后k才增 1。

    【问题1】 (12分)

    请根据说明中函数CompactArr_v1的处理思路填补空缺(1)~(3),根据CompactArr_v2的处理

    思路填补空缺(4)。

    【问题2】(3分)

    请说明函数CompactArr vl存在的缺点。


    正确答案:
    试题三参考答案(共 15分)
    【问题 1】 (12分)
    (1) sizeof(int) (3分)
    若考生解答为一个正整数,则给 2分
    (2)temp[k++] 或*(temp+k++)或等价表示 (3分)
    (3) ik 或等价表示 (3分)
    (4)a[k++] 或*(a+k++)或等价表示 (3分)
    【问题 2】(3分)
    可能由于动态内存申请操作失败而导致函数功能无法实现,时间和空间效率低。
    注:考生仅回答出运行速度慢则给 2分,其他含义相同的描述可给满分或酌情给分。

  • 第2题:

    阅读以下说明和流程图,填补流程图中的空缺(1)~(9),将解答填入对应栏内。1、【说明】 假设数组A中的各元素A(1),A(2),…,A(M)已经按从小到大排序(M≥1);数组B中的各元素B(1),B(2),…,B(N)也已经按从小到大排序(N≥1)。执行下面的流程图后,可以将数组A与数组B中所有的元素全都存入数组C中,且按从小到大排序 (注意:序列中相同的数全部保留并不计排列顺序)。例如,设数组A中有元素:2,5, 6,7,9;数组B中有元素2,3,4,7:则数组C中将有元素:2,2,3,4,5,6,7, 7, 9。【流程图】


    答案:
    解析:
    (1)1(2)A(i)(3)B(j)(4)i(5)j(6)B(j)(7)A(i)(8)j(9)i
    【解析】

    这是最常见的一种合并排序方法。为对较大的序列进行排序,先将其分割成容量相当的几个部分,分别进行排序,最后再合并在一起。当然,这些排序要么都是升序,要么都是降序。本题全部是按升序排序的。 例如,为了将整副扑克牌按升序进行排序,先将其分割成两个部分(数量大致相当),对每个部分完成升序排序后,就形成了两叠已排序的牌。如何将其合并呢?办法如下。 每次都比较各叠最上面的两张牌,取出比较小的,放入新堆,再继续比较。直到其中一堆空了,就将另一堆剩余的牌逐张放入新堆。新堆就是合并后的已完成排序的序列。 在数据排序时,遇到相同的数比较时,任取一个就可以了。 对本题来说,i、j、k是数组A、B、C的下标,初始时,都应该是1。因此,空(1)处应填写1。 将A(i)与B(j)进行比较后,如果A(i)≤B(j),那么应该将A(i)→C(k)。这是升序的要求。因此,空(2)处应填A(i)。如果A(i)>B(j),则应将B(j)→C (k)。因此,空(3)处应填B(j)。 在A(i)→C(k)后,i应增加1,为下次取A(i)再比较做准备(k也需要增加1,为下次存入C(k)做准备)。这时,需要比较数组A是否已经取完,即判断i>M是否成立。如果i>M,则表示数组A中的元素已经全部取出,需要将数组B中剩余的元素逐个移入C(k)。因此,空(4)处应填i,空(6)处应填B(j)。数组B处的元素何时移完呢?这就需要判断i>N是否成立。因此,空(8)处应填j。 同样,空(3)处将B(j)存入C(k),直到,j>N时数组B中的元素取完。此时,需要将数组A中剩余的元素逐个移入C(k),直到i>M时全部完成。因此,空(5)处应填j,空(7)处应填A(i),空(9)处应填i。

  • 第3题:

    编写程序求含有N个元素一维数组的最大值、最小值及它们的下标。要求:数组元素的输入、求最大值最小值及它们的下标通过函数实现,结果在主函数中输出。


    D

  • 第4题:

    阅读以下说明和流程图,填补流程图和问题中的空缺(1)~(5),将解答填入答题纸的对应栏内。【说明】设整型数组A[1:N]每个元素的值都是1到N之间的正整数。一般来说,其中会有一些元素的值是重复的,也有些数未出现在数组中。下面流程图的功能是查缺查重,即找出A[1:N]中所有缺的或重复的整数,并计算其出现的次数(出现次数为0时表示缺)。流程图中采用的算法思想是将数组A的下标与值看作是整数集[1:N]加上的一个映射,并用数组C[1:N]记录各整数出现的次数,需输出所有缺少的或重复的数及其出现的次数。【流程图】

    【问题】 如果数组A[1:5]的元素分别为{3,2,5,5,1},则算法流程结束后输出结果为: (5) 输出格式为:缺少或重复的元素,次数(0表示缺少)


    答案:
    解析:
    (1)A[i](2)C[k]+1(3)1(4)k和C[k](5)4,{1,1,1,0,2}
    【解析】

    (1)A[i](2)C[k]+1(3)1(4)k和C[k](5)4,{1,1,1,0,2}

  • 第5题:

    试题一(共 20 分)阅读下列说明和图,回答问题 1 至问题 3,将解答填入答题纸的对应栏内。【说明】设有二维整数数组(矩阵)A[1:m,1:n],其每行元素从左至右是递增的,每列元素从上到下是递增的。以下流程图旨在该矩阵中需找与给定整数 X 相等的数。如果找不到则输出“false”;只要找到一个(可能有多个)就输出“True”以及该元素的下标 i 和 j(注意数组元素的下标从 1 开始)。例如,在如下矩阵中查找整数 8,则输出伟:True,4,12 4 6 94 5 9 106 7 10 128 9 11 13流程图中采用的算法如下:从矩阵的右上角元素开始,按照一定的路线逐个取元素与给定整数 X 进行比较(必要时向左走一步或向下走一步取下一个元素),直到找到相等的数或超出矩阵范围(找不到)。【流程图】

    【问题】该算法的时间复杂数是()
    供选择答案:A.O(1) B.O(m+n) C.(m*n) D,O(m2+n2)


    答案:
    解析:
    (1)n(2)j-1→j(3)i+1→I(4)j(5)C
    【解析】

    读题,可以看出元素查找的过程为从右上角开始,往右或者往下进行查找。因此,初始值i=1,j=n。如果查找值小于右上角值,则往右移动一位再进行比较。所以,第二空填j-1→j 。接下来是判断什么时候跳出循环。此时,终止循环的条件是:j=0,也就是其从最右端移到了最左端。再看X