阅读说明和流程图,填补流程图中的空缺(1)?(5),将答案填入答题纸对应栏内。【说明】本流程图用于计算菲波那契数列{a1=1,a2=1,…,an=an-1+an-2!n=3,4,…}的前n项(n>=2) 之和S。例如,菲波那契数列前6项之和为20。计算过程中,当前项之前的两项分别动态地保存在变量A和B中。【流程图】

题目
阅读说明和流程图,填补流程图中的空缺(1)?(5),将答案填入答题纸对应栏内。【说明】本流程图用于计算菲波那契数列{a1=1,a2=1,…,an=an-1+an-2!n=3,4,…}的前n项(n>=2) 之和S。例如,菲波那契数列前6项之和为20。计算过程中,当前项之前的两项分别动态地保存在变量A和B中。【流程图】


相似考题
更多“阅读说明和流程图,填补流程图中的空缺(1)?(5),将答案填入答题纸对应栏内。【说明】本流程图用于计算菲波那契数列{a1=1,a2=1,…,an=an-1+an-2!n=3,4,…}的前n项(n>=2) 之和S。例如,菲波那契数列前6项之和为20。计算过程中,当前项之前的两项分别动态地保存在变量A和B中。【流程图】 ”相关问题
  • 第1题:

    阅读以下说明和流程图,填补流程图中的空缺(1)一(5),将解答填入答题纸的对应栏内。

    【说明】

    下面的流程图采用公式ex=1+x+x2/2 1+x3/3 1+x4/4 1+…+xn/n!+???计算ex的近似值。设x位于区间(0,1),该流程图的算法要点是逐步累积计算每项xx/n!的值(作为T),再逐步累加T值得到所需的结果s。当T值小于10-5时,结束计算。

    【流程图】


    正确答案:(1)S (2)x/n (3)T<O.00001 (4)S+T (5)n+1->n
    (1)S (2)x/n (3)T<O.00001 (4)S+T (5)n+1->n 解析:在题目中已经给出了指数函数ex的公式,即基本算法,另外也给出了计算过程中控制误差终止计算的方法。本题主要的重点是如何设计计算流程,实现级数前若干项的求和,以及判断计算终止的条件。级数求和一般都是采用逐项累加的方法。从流程图我们可以看出s为累加结果,T为动态的项值,最后通过s+T->S来完成各项的累加。已知T=xnx/n!,如果每次都直接计算T的值,计算量会比较大。从ex的公式中我们可以看出每一项都一个共同点,就是后一项和前一项有简单的关系Tn=T(n-i)*x/n,我们可以充分利用前项的计算结果来计算后一项,这样就会大大减少计算量。这也是程序员需要掌握的基本技巧。在流程图中,一开始先输入变量x,接着对其他变量赋初值。级数项号n的初始值为1,逐次进行累积的T的初始值为1,根据后面的流程推断可以看出逐次进行累加的s应该有初始值l的(在输入的x满足条件直接退出循环的时候根据公式输出的值为D,所以空(1)的答案为“S”。从前面分析直到e。的公式中后一项和前一项有简单的关系Tn=T(n-i)*x/n,所以空(2)的答案为“x/n”。空(3)处是判断计算过程结束的条件,按照题目中的要求“当T值小于lO-5时,结束计算。”所以空(3)的答案为“T<0.00001”。按照题意空(4)处是要对每项的结果进行累加赋给S,实现s+T->s,所以空(4)的答案为“S+T”。流程走到空(5)的时候已经求出第n项的值Tn,并累加到s中,根据算法下一步应该计算第n+1项的值,所以这里需要对级数的项号n进行自增,空(5)的答案可以为“n+=1”或者n++,但是根据流程图以上的书写风格写为“n+1->n”应该是最佳答案。

  • 第2题:

    阅读下列说明和流程图,将应填入(n)处的语句写在对应栏内。

    【说明】

    下列流程图用泰勒(Taylor)展开式y=ex=1+x+x2/2!+x3/3!+…+xn/n!+…计算并打印ex的近似值,其中用ε(>0)表示误差要求。

    【流程图】


    正确答案:(1)0 (2)0 (3)|t|:ε (4)s+1 (5)t*x/s
    (1)0 (2)0 (3)|t|:ε (4)s+1 (5)t*x/s 解析:本题考查程序流程图的内容。
    首先让我们来了解一下题目的真正含义,题目要求用泰勒展开式计算y=ex的近似值。并且给出了误差要求,只要当误差小于ε时,就可以输出计算结果了。泰勒展开式的式子是n项之和,每多加一项,其值就越接近真实值。因此,在程序设计时,每加一项之前,先进行此项与ε的比较,来判定计算结果是否已满足题目要求。
    从流程图中看到有S、y、t、x这几个变量。其中x、y是公式中的变量,而S、t则是中间变量。从y←y+t语句可以看出,t是每次要加的项,S则是帮助t改变的变量。在计算开始前,我们应该将y的值赋为零,因此,第(2)空答案就为0;而S在t没发生变化的初值也应该是0,即第(1)空答案为0。
    第(3)空处是个条件判断语句,应该是进行该加项与ε比较判断,因此第(3)空的答案是|t|:ε。
    第(4)空与第(5)空要一起考虑。由于S是帮助t改变的变量,而t的每次改变是分母乘以一个加1的数,而分子乘以x。这里假设S是帮助t改变分母的变量,第(4)空应填s+1,那么第(5)空应该为t*x/s。

  • 第3题:

    阅读以下说明和流程图,回答问题将解答填入对应栏内。

    [说明]

    已知递推数列:a(1)=1,a (2s)= a (s),a(2s+1)=a (s)+a (s+1)(s 为正整数)。试求该数列的第n项与前n项中哪些项最大?最大值为多少?

    算法分析:该数列序号分为奇数或偶数两种情况做不同递推,所得数列呈大小有规律的摆动。设置a数组,赋初值a (1)=1。根据递推式,在循环中分项序号s (2~n)为奇数或偶数作不同递推:每得一项 a (s),即与最大值max 作比较,如果a (s)>max,则max=a(i)。最后,在所有项中搜索最大项(因最大项可能多于一项),并打印最大值max。

    [问题]

    将流程图中的(1)~(5)处补充完整。

    注:流程图中(1)循环开始的说明按照“循环变量名:循环初值,循环终值,增量”格式描述。

    [流程图]


    正确答案:(1)for s=2 to n (2) mod(s2)=0 (3) a(s)=a(s/2) (4) a(s)=a(s+1)/2+a(s-1)/2) (5) max=a(s)
    (1)for s=2 to n (2) mod(s,2)=0 (3) a(s)=a(s/2) (4) a(s)=a(s+1)/2+a(s-1)/2) (5) max=a(s)

  • 第4题:

    请在函数proc()的横线上填写若干表达式,使从键盘上输入一个整数n,输出斐波那契数列的前n个数。斐波那契数列是一个整数数列,该数列自第3项开始,每个数等于前面两个数之和,即0,1,1,2,3,5,8,13,21,34,55,…

    注意:部分源程序给出如下。

    请勿改动main()函数和其他函数中的任何内容,仅在函数proc()的横线上填入所编写的若干表达式或语句。

    试题程序:


    正确答案:

    【1】n==0【2】n==1【3】proc(n-1)+proc(n-2)
    【解析】由斐波那契数列的定义可知,该数列中有两个特殊项。当n为0时,其值为0;当n为1时,其值为1。因此,【1】处填“n==0”;【2】处填“n==1”;当n为其他值时,为前两项的和,因此,[3]处填“proc(n-1)+proc(n-2)”。

  • 第5题:

    阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。 【说明】 设有整数数组A[1:N](N>1),其元素有正有负。下面的流程图在该数组中寻找连续排列的若干个元素,使其和达到最大值,并输出其起始下标K、元素个数L以及最大的和值M。 例如,若数组元素依次为3,-6,2,4,-2,3,-1,则输出K=3,L=4,M=7。该流程图中考察了A[1:N]中所有从下标i到下标j(j≥i)的各元素之和S,并动态地记录其最大值M。

    【流程图】注:循环开始框内应给出循环控制变量的初值和终值,默认递增值为1,格式为:循环控制变量=初值,终值


    正确答案:(1)i,N
    (2)S+A[j]
    (3)S
    (4)j-i+1
    (5)S

  • 第6题:

    ●试题一

    阅读下列说明和流程图,将应填入(n)的字句写在答题纸的对应栏内。

    【说明】

    下列流程图(如图4所示)用泰勒(Taylor)展开式

    sinx=x-x3/3!+x5/5!-x7/7!+…+(-1)n×x 2n+1/(2n+1)!+…

    【流程图】

    图4

    计算并打印sinx的近似值。其中用ε(>0)表示误差要求。


    正确答案:
    ●试题一【答案】(1)x*x(2)x->t(3)|t|∶ε(4)s+2->s(5)(-1)*t*x2/(s*(s-1))【解析】该题的关键是搞清楚几个变量的含义。很显然变量t是用来保存多项式各项的值,变量s和变量x2的作用是什么呢?从流程图的功能上看,需要计算1!、3!、5!,……,又从变量s的初值置为1可知,变量s主要用来计算这此数的阶乘的,但没有其他变量用于整数自增,这样就以判断s用来存储奇数的,即s值依次为1、3、5,……。但x2的功能还不明确,现在可以不用管它。(2)空的作用是给t赋初值,即给它多项式的第一项,因此应填写"x->t"。(3)空处需填写循环条件,显然当t的绝对值小于ε(>0)就表示已经达到误差要求,因此(3)空应填入"|t|∶ε"。由变量s的功能可知,(4)空应当实现变量s的增加,因此(4)空应填入"s+2->s"。(5)空应当是求多项式下一项的值,根据多项式连续两项的关系可知,当前一项为t时,后一项的值为(-1)*t*x*x/(s*(s-1))。但这样的话,每次循环都需要计算一次x*x,计算效率受到影响,联想到变量x2还没用,这时就可以判断x2就是用来存储x*x的值,使得每次循环者少进行一次乘法运算。因此(1)空处应填入"x*x",(5)空处应填入"(-1)*t*x2/(s*(s-1))"。

  • 第7题:

    试题一(共 15 分)

    阅读以下说明和流程图,填补流程图中的空缺(1)~(9) ,将解答填入答题纸的对应栏内。

    [说明]

    假设数组 A 中的各元素 A(1),A(2) ,…,A(M)已经按从小到大排序(M≥1) ;数组 B 中的各元素 B(1),B(2),…,B(N)也已经按从小到大排序(N≥1) 。执行下面的流程图后, 可以将数组 A 与数组 B 中所有的元素全都存入数组 C 中, 且按从小到大排序 (注意:序列中相同的数全部保留并不计排列顺序) 。例如,设数组 A 中有元素:2,5,6,7,9;数组B 中有元素:2,3,4,7;则数组 C 中将有元素:2,2,3,4,5,6,7,7,9。

    [流程图]


    正确答案:

  • 第8题:

    阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。
    [说明]
    两个包含有限个元素的非空集合A、B的相似度定义为|A∩B|/|A∪B|,即它们的交集大小(元素个数)与并集大小之比。
    以下的流程图计算两个非空整数集合(以数组表示)的交集和并集,并计算其相似度。已知整数组A[1:m]和B[1:n]分别存储了集合A和B的元素(每个集合中包含的元素各不相同),其交集存放于数组C[1:s],并集存放于数组D[1:t],集合A和B的相似度存放于SIM。
    例如,假设A={1,2,3,4},B={1,4,5,6},则C={1,4),D={1,2,3,4,5,6},A与B的相似度SIM=1/3。
    [流程图]


    答案:
    解析:
    s
    t
    C[s]
    D[t]
    s/t


    【解析】

    本题考查程序处理流程图的设计能力。
    首先我们来理解两个有限集合的相似度的含义。两个包含有限个元素的非空集合A、B的相似度定义为它们的交集大小(元素个数)与并集大小之比。如果两集合完全相等,则相似度必然为1(100%);如果两集合完全不同(没有公共元素),则相似度必然为0;如果集合A中有一半元素就是集合B的全部元素,而另一半元素不属于集合B,则这两个集合的相似度为0.5(50%)。因此,这个定义符合人们的常理性认识。
    在大数据应用中,经常要将很多有限集进行分类。例如,每天都有大量的新闻稿。为了方便用户检索,需要将新闻稿分类。用什么标准来分类呢?每一篇新闻稿可以用其中所有的关键词来表征。这些关键词的集合称为这篇新闻稿的特征向量。两篇新闻稿是否属于同一类,依赖于它们的关键词集合是否具有较高的相似度(公共关键词个数除以总关键词个数)。搜索引擎可以将相似度超过一定水平的新闻稿作为同一类。从而,可以将每天的新闻稿进行分类,就可以按用户的需要将某些类的新闻稿推送给相关的用户。
    本题中的集合用整数组表示,因此,需要规定同一数组中的元素各不相同(集合中的元素是各不相同的)。题中,整数组A[1:m]和B[1:n]分别存储了集合A和B的元素。流程图的目标是将A、B中相同的元素存放入数组C[1:s](共s个元素),并将A、B中的所有元素(相同元素只取一次)存放入数组D[1:t](共t个元素),最后再计算集合A和B相似度s/t。
    流程图中的第一步显然是将数组A中的全部元素放入数组D中。随后,只需要对数组B中的每个元素进行判断,凡与数组A中某个元素相同时,就将其存入数组C;否则就续存入数组D(注意,数组D中已有m个元素)。这需要对j(遍历数组B)与i(遍历数组A)进行两重循环。判断框B[j]=A[i]成立时,B[j]应存入数组C;否则应继续i循环,直到循环结束仍没有相等情况出现时,就应将B[i]存入数组D。存入数组C之前,需要将其下标s增1;存入数组D之前,需要将其下标t增1。因此,初始时,应当给i赋0,使数组C的存数从C[1]开始。从而,(1)处应填s,(3)处应填C[s]。而数组D是在已有m个元素后续存,所以,初始时,数组D的下标t应当是m,续存是从D[m+1]开始的。因此,(2)处应填t,(4)处应填D[t]。
    两重循环结束后,就要计算相似度s/t,将其赋予SIM,因此(5)处应填s/t。

  • 第9题:

    阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。
    [说明]
    本流程图旨在统计一本电子书中各个关键词出现的次数。假设已经对该书从头到尾依次分离出各个关键词{A(i)|i=1,…,n}(n>1)},其中包含了很多重复项,经下面的流程处理后,从中挑选出所有不同的关键词共m个{K(j)|j=1,…,m},而每个关键词K(j)出现的次数为NK(j),j=1,…,m。
    [流程图]


    答案:
    解析:
    1
    K(j)
    NK(j)+1→NK(i) 或NK(j)++ 或等价表示
    m+1→m或m++ 或等价表示
    A(i)

    【解析】

    流程图中的第1框显然是初始化。A(1)→K(1)意味着将本书的第1个关键词作为选出的第1个关键词。1→NK(1)意味着此时该关键词的个数置为1。m是动态选出的关键词数目,此时应该为1,因此(1)处应填1。
    本题的算法是对每个关键词与已选出的关键词进行逐个比较。凡是遇到相同的,相应的计数就增加1;如果始终没有遇到相同关键词的,则作为新选出的关键词。
    流程图第2框开始对i=2,n循环,就是对书中其他关键词逐个进行处理。流程图第3框开始j=1,m循环,就是按己选出的关键词依次进行处理。
    接着就是将关键词A(i)与选出的关键词K(j)进行比较。因此(2)处应填K(j)。
    如果A(i)=K(i),则需要对计数器NK(j)增1,即执行NK(j)+1→NK(j)。因此(3)处应填NK(j)+1→NK(j)。执行后,需要跳出j循环,继续进行i循环,即根据书中的下一个关键词进行处理。
    如果A(i)不等于NK(j),则需要继续与下个NK(j)进行比较,即继续执行j循环。如果直到j循环结束仍没有找到匹配的关键词,则要将该A(i)作为新的已选出的关键词。因此,应执行A(i)→K(m+1)以及m+1→m。更优的做法是先将计数器m增1,再执行A(i)→K(m)。因此(4)处应填m+1→m,(5)处应填A(i)。

  • 第10题:

    阅读以下说明和流程图,填写流程图中的空缺,将解答填入答题纸的对应栏内。 【说明】如果n位数(n≧2)是回文数(从左到右读与从右到左读所得结果一致),且前半部分的数字递增(非减)、后半部分的数字将递减(非增),则称该数为拱形回文数。例如,12235753221 就是一个拱形回文数。显然,拱形回文数中不含数字0。下面的流程图用于判断给定的n位数(各位数字依次存放在数组的各个元素A[ i ]中,i =1,2,…,n)是不是拱形回文数。流程图中,变量T 动态地存放当前位之前一位的数字。当n 是奇数时,还需要特别注意中间一位数字的处理。【流程图】

    注1:“循环开始”框内给出的循环控制变量的初值、终值和增值(默认为1),格式为:循环款控制变量=初值,终值[ , 增值 ]注2:函数int(x)为取x的整数部分,即不超过x 的最大整数。


    答案:
    解析:
    (1)n-i+1(2)T&&A[i]!=O或 T&&A[i]>0(3)T(4)n(5)T或A[n/2]或A[(n-1)/2]
    【解析】

    1)跟A[i]对称的后半部分元素下标是n-i+1 ;2)T动态地存放当前位之前一位的数字,所以这甲A[i] 大于前一项T值,且在拱形回文数中,不含数字0,所以再加上一个条件 A[i]!=03)比较完后,将A[i]值赋给T,T 进行动态地存放当前位之前一位的数字。4.5)判断元素个数是偶数还是奇数,如果是奇数,则还需要进行判断最中间的元素,所以4 空这里填空n,5空填的是为奇数个时最中间元素的前一项元素的表示。

  • 第11题:

    第一题 阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。
    【说明】
    对于大于1的正整数n,(x+1)n可展开为

    问题:1.1 【流程图】

    注:循环开始框内应给出循环控制变量的初值和终值,默认递增值为1。
    格式为:循环控制变量=初值,终值,递增值。


    答案:
    解析:
    (1)2,n,1
    (2)A[k]
    (3)k-1,1,-1
    (4)A[i]+A[i-1]
    (5)A[i]
    【解析】

    (1)(3)空为填写循环初值终值和递增值,题目中给出的格式为循环控制变量=初值,终值,递增值。按照题意,实质为求杨辉三角。如下图:

  • 第12题:

    单选题
    卢卡斯数列是斐波那契数列的推广,其前两项是()
    A

    1、2

    B

    1、1

    C

    2、3

    D

    1、3


    正确答案: C
    解析: 暂无解析

  • 第13题:

    阅读以下说明和C函数代码,回答问题并将解答写在对应栏内。

    【说明】

    著名的菲波那契数列定义式为

    f1=1 f2=1 fn=fn-1+fn-2 (n=3,4,…)

    因此,从第1项开始的该数列为1,1,2,3,5,8,13,21,…。函数fibl和fib2分别用递归方式和迭代方式求解菲波那契数列的第n项(调用fib1、fib2时可确保参数n获得一个正整数)。

    【C函数代码】

    函数fib1和fib2存在错误,只需分别修改其中的一行代码即可改正错误。

    (1)函数fib1不能通过编译,请写出fib1中错误所在行修改正确后的完整代码。

    (2)函数fib2在n≤2时不能获得正确结果,请写出fib2中错误所在行修改正确后的完整代码。


    正确答案:(1) return fib1(n-1)+fib1(n-2);或return(fib1(n-1)+fib1(n-2)); (2) long f=1;或long f=(long)1;或long f=1L;
    (1) return fib1(n-1)+fib1(n-2);或return(fib1(n-1)+fib1(n-2)); (2) long f=1;或long f=(long)1;或long f=1L; 解析:函数fib1不能通过编译,原因在于语句“fib1(n)=fib1(n-1)+fib1(n-2)”出错,该语句中fib1(n)、fib1(n-1)、fib1(n-2)都是函数调用,由于fib1是返回长整型数据的函数,所以不能为函数调用fib1(n)赋值。该语句处应将fib1(n-1)+fib1(n-2)的值作为返回值,形式为“returnfib1(n-1)+fib1(n-2)”。
    在函数fib2中,for语句从i等于3开始循环,用于计算菲波那契数列第3项及以后各项的值。对于n等于1或2,for语句的循环体并不执行,因此对于第1、2项数列值,最后返回的f值是不确定的,为f赋初值1即可纠正该错误。

  • 第14题:

    阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。

    【说明】对于大于1的正整数n,(x+1)n可展开为下面流程图的作用是计算(x+1)n展开后的各项系数(i=0,1,....,n)并依次存放在数组A[0...n]中。方法是依次计算k=2,3,..,n时(x+1)k的展开系数并存入数组A,在此过程中,对任一确定的k,利用关系式,按照i递减的顺序逐步计算并将结果存储在数组A中。其中,和都为1,因此可直接设置A[0]、A[k]的值为1。 例如,计算(x+1)3的过程如下:先计算(x+1)2(即k=2)的各项系数,然后计算(x+1)3(即k=3)的各项系数。K=2时,需要计算,和,并存入A[0],A[1]和A[2],其中A[0]和A[1]的值已有,因此将(即A[1])和即(A[0])相加得到的值并存入A[1]。k=3时,需要计算,和和,先计算出(由)得到并存入A[2],再计算(由得到)并存入A[1]。


    正确答案:

    【流程图】

    (1)2,n,1

    (2)A[k]

    (3)k-1,1,-1

    (4)A[i]+A[i-1]

    (5)A[i]

  • 第15题:

    阅读以下说明和流程图,回答问题1-2,将解答填入对应的解答栏内。

    [说明]

    下面的流程图采用欧几里得算法,实现了计算两正整数最大公约数的功能。给定正整数m和 n,假定m大于等于n,算法的主要步骤为:

    (1)以n除m并令r为所得的余数;

    (2)若r等于0,算法结束;n即为所求;

    (3)将n和r分别赋给m和n,返回步骤(1)。

    [流程图]

    [问题1] 将流程图中的(1)~(4)处补充完整。

    [问题2] 若输入的m和n分别为27和21,则A中循环体被执行的次数是(5)。


    正确答案:[问题1] (1) n>m或nm或其它等效形式 (2) m←t (3) n←r (4) m%n [问题2] (5) 1
    [问题1] (1) n>m或nm或其它等效形式 (2) m←t (3) n←r (4) m%n [问题2] (5) 1 解析:(1)~(2)当n的值大于(等于)m时,应交换两者的值,再使用欧几里得算法;
    (3)~(4)略;
    (5)m,n和r在执行循环A前后的值分别为:

  • 第16题:

    阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。 【说明】 下面流程图的功能是:在给定的一个整数序列中查找最长的连续递增子序列。设序列存放在数组 A[1:n](n≥2)中,要求寻找最长递增子序列 A[K: K+L-1] (即A[K]<A[K+1]<…<A[K+L-1])。流程图中,用 Kj 和Lj 分别表示动态子序列的起始下标和长度,最后输出最长递增子序列的起始下标 K 和长度 L。 例如,对于序列 A={1 ,2,4,4 ,5,6,8,9,4,5,8},将输出K=4, L=5。

    【流程图】注:循环开始框内应给出循环控制变量的初值和终值,默认递增值为1,格式为: 循环控制变量=初值,终值


    正确答案:(1)n-1
    (2)Lj+1→Lj        
    (3)Lj > L     
    (4)Kj
    (5)i+1

  • 第17题:

    ?????? 阅读以下说明和流程图,填补流程图中的空缺(1)~(5),将解答填入答题纸的

    对应栏内。

    【说明】

    本流程图旨在统计一本电子书中各个关键词出现的次数。假设已经对该书从头到尾

    依次分离出各个关键词{A(i)li=l,…,n}(n>1)}.其中包含了很多重复项,经下面的流程

    处理后,从中挑选出所有不同的关键词共m个{K(j)[j=l,…,m},而每个关键词K(j)出现的次数为NK(j).j=l,…,m。

    ??????


    正确答案:
    ??流程图中的第1框显然是初始化。A(1)→K(1)意味着将本书的第1个关键词作为选出的第1个关键词。1→NK(1)意味着此时该关键词的个数置为1。m是动态选出的关键词数目,此时应该为1,因此(1)处应填1。?本题的算法是对每个关键词与已选出的关键词进行逐个比较。凡是遇到相同的,相??应的计数就增加1;如果始终没有遇到相同关键词的,则作为新选出的关键词。流程图第2框开始对i=2,n循环,就是对书中其他关键词逐个进行处理。流程图第3框开始j=l,m循环,就是按已进出的关键词依次进行处理。接着就是将关键词A(i)与选出的关键词K(j)进行比较。因此(2)处应填K(j)。如果A(i)=K(j),则需要对计数器NK(j)增1.即执行NK(j)+1→NK(j)。因此(3)处应填NK(j)+I→NK(j)。执行后,需要跳出j循环,继续进行i循环,即根据书中的下一个关键词进行处理。如果A(i)不等于NK(j),则需要继续与下个NK(j)进行比较,即继续执行j循环。如果直到j循环结束仍没有找到匹配的关键词,则要将该A(i)作为新的已选出的关键词。因此,应执行A(i)→K(m+1)以及m+l→m。更优的做法是先将计数器m增1,再执行A(j)→K(m)。因此(4)处应填m+l→m,(5)处应填A(i)。试题一参考答案(1)1(2)K(j)(3)Nk(j)+I→NK(j)或NK(j)十十或等价表示(4)m+l→m或m++或等价表示(5)A(i)??

  • 第18题:

    ●试题一

    阅读下列说明和流程图,将应填入(n)处的语句写在答题纸的对应栏内。

    【说明】

    下列流程图用于从数组K中找出一切满足:K(I)+K(J)=M的元素对(K(I),K(J))(1≤I≤J≤N)。假定数组K中的N个不同的整数已按从小到大的顺序排列,M是给定的常数。

    【流程图】

    此流程图1中,比较"K(I)+K(J)∶M"最少执行次数约为 (5) 。

    图1


    正确答案:
    ●试题一【答案】(1)(2)<(3)I+l->I(4)J-1->J(5)「N/2」【解析】该算法的思路是:设置了两个变量I和J,初始时分别指向数组K的第一个元素和最后一个元素。如果这两个元素之和等于M时,输出结果,并这两个指针都向中间移动;如果小于M,则将指针I向中间移动(因为数组K已按从小到大的顺序排列);如果大于M,则将指针J向中间移动(因为数组K已按从小到大的顺序排列)。当IJ时,说明所有的元素都搜索完毕,退出循环。根据上面的分析,(1)、(2)空要求填写循环结束条件,显然,(1)空处应填写"",(2)空处应填写"<"。这里主要要注意I=J的情况,当I=J时,说明指两个指针指向同一元素,应当退出循环。(3)空在流程图有两处,一处是当K(I)+K(J)=M时,另一处是当K(I)+K(J)<M时,根据上面分析这两种情况都要将指针I向中间移动,即"I+1->I"。同样的道理,(4)空处应填写"J-1->J"。比较"K(I)+K(J):M"最少执行次数发生在第1元素与第N个元素之和等于M、第2元素与第N-1个元素之和等于M、……,这样每次比较,两种指针都向中间移动,因此最小执行次数约为"N-2"。

  • 第19题:

    试题四(共 15 分)

    阅读以下说明和 C 函数代码,回答问题并将解答写在答题纸的对应栏内。

    [说明]

    著名的菲波那契数列定义式为

    f1 = 1 f2 = 1 fn = fn-1 + fn-2 (n = 3,4,…)

    因此,从第 1 项开始的该数列为 1,1,2,3,5,8,13,21,…。函数 fib1 和 fib2 分别用递归方式和迭代方式求解菲波那契数列的第 n 项(调用 fib1、fib2 时可确保参数 n 获得一个正整数) 。

    [C函数代码]

    [问题 1](6 分)

    函数 fib1 和 fib2 存在错误,只需分别修改其中的一行代码即可改正错误。

    (1)函数 fib1 不能通过编译,请写出 fib1 中错误所在行修改正确后的完整代码;

    (2)函数 fib2 在n≤2 时不能获得正确结果,请写出 fib2 中错误所在行修改正确后的完整代码。

    [问题 2](3 分)

    将函数 fib1 和 fib2 改正后进行测试,发现前 46 项都正确,而第 47 项的值是一个负数,请说明原因。

    [问题 3](6 分)

    函数 fib1、fib2 求得菲波那契数列第 n 项(n>40)的速度并不相同,请指出速度慢的函数名,并简要说明原因。


    正确答案:


  • 第20题:

    阅读下列说明和流程图,填补流程图中的空缺(1)~(9),将解答填入答题纸的对应栏内。【说明】假设数组A中的各元素A⑴,A (2),…,A (M)已经按从小到大排序(M>1):数组B中的各元素B(1) , B (2) . B (N)也已经按从小到大排序(N≥1)。执行下面的流程图后,可以将数组A与数组B中所有的元素全都存入数组C中,且按从小到大排序(注意:序列中相同的数全部保留并不计排列顺序)。例如,设数组A中有元素: 2,5,6,7,9;数组B中有元素: 2,3,4,7;则数组C中将有元素: 2,2,3,4,5,6,7,7,9.


    答案:
    解析:
    (1)1 (2)A (i) (3) B (j)⑷ i (5)J(6) B (j)(7) A (i)(8) j(9) i

  • 第21题:

    阅读以下说明和流程图,填补流程图中的空缺(1)~(9),将解答填入对应栏内。1、【说明】 假设数组A中的各元素A(1),A(2),…,A(M)已经按从小到大排序(M≥1);数组B中的各元素B(1),B(2),…,B(N)也已经按从小到大排序(N≥1)。执行下面的流程图后,可以将数组A与数组B中所有的元素全都存入数组C中,且按从小到大排序 (注意:序列中相同的数全部保留并不计排列顺序)。例如,设数组A中有元素:2,5, 6,7,9;数组B中有元素2,3,4,7:则数组C中将有元素:2,2,3,4,5,6,7, 7, 9。【流程图】


    答案:
    解析:
    (1)1(2)A(i)(3)B(j)(4)i(5)j(6)B(j)(7)A(i)(8)j(9)i
    【解析】

    这是最常见的一种合并排序方法。为对较大的序列进行排序,先将其分割成容量相当的几个部分,分别进行排序,最后再合并在一起。当然,这些排序要么都是升序,要么都是降序。本题全部是按升序排序的。 例如,为了将整副扑克牌按升序进行排序,先将其分割成两个部分(数量大致相当),对每个部分完成升序排序后,就形成了两叠已排序的牌。如何将其合并呢?办法如下。 每次都比较各叠最上面的两张牌,取出比较小的,放入新堆,再继续比较。直到其中一堆空了,就将另一堆剩余的牌逐张放入新堆。新堆就是合并后的已完成排序的序列。 在数据排序时,遇到相同的数比较时,任取一个就可以了。 对本题来说,i、j、k是数组A、B、C的下标,初始时,都应该是1。因此,空(1)处应填写1。 将A(i)与B(j)进行比较后,如果A(i)≤B(j),那么应该将A(i)→C(k)。这是升序的要求。因此,空(2)处应填A(i)。如果A(i)>B(j),则应将B(j)→C (k)。因此,空(3)处应填B(j)。 在A(i)→C(k)后,i应增加1,为下次取A(i)再比较做准备(k也需要增加1,为下次存入C(k)做准备)。这时,需要比较数组A是否已经取完,即判断i>M是否成立。如果i>M,则表示数组A中的元素已经全部取出,需要将数组B中剩余的元素逐个移入C(k)。因此,空(4)处应填i,空(6)处应填B(j)。数组B处的元素何时移完呢?这就需要判断i>N是否成立。因此,空(8)处应填j。 同样,空(3)处将B(j)存入C(k),直到,j>N时数组B中的元素取完。此时,需要将数组A中剩余的元素逐个移入C(k),直到i>M时全部完成。因此,空(5)处应填j,空(7)处应填A(i),空(9)处应填i。

  • 第22题:

    试题(15 分)阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏 内。【说明】设有整数数组 A[1:N](N>1),其元素有正有负。下面的流程图在该数组 中寻找连续排列的若干个元素,使其和达到最大值,并输出其起始下标 K、元素 个数 L 以及最大的和值 M。例如,若数组元素依次为 3,-6,2,4,-2,3,-1,则输出 K=3,L=4,M=7。 该流程图中考察了 A[1:N]中所有从下标 i 到下标 j(j≥i)的各元素之和 S,并动态地记录其最大值 M。【流程图】

    注:循环开始框内应给出循环控制变量的初值和终值,默认递增值为 1,格式为:循环控制变量=初值,终值


    答案:
    解析:
    1、j=i+1
    2、S+A[j]
    3、S
    4、j-i+1
    5、S

  • 第23题:

    阅读以下说明和流程图,填写流程图中的空缺,将解答填入答题纸的对应栏内。【说明】设[a1b1],[a2b2],...[anbn]是数轴上从左到右排列的n个互不重叠的区间(a1


    答案:
    解析:
    1.A2.ai3.bi4.A 、B5.B
    【解析】

    若A≤ai则输出A,反之输出ai。若A≤bi不满足则输出bi,依次类推。