更多“简述高中数学课程的地位和作用。 ”相关问题
  • 第1题:

    下列关于高中数学基础性的说法不正确的是( )

    A.高中数学课程为学生进一步学习提高了必要的数学准备
    B.高中数学为不同学生提供相同的基础
    C.高中数学课程体现时代性、基础性和选择性
    D.高中数学课程要以学生的发展为本,尊重他们的个性发展

    答案:B
    解析:
    本题考查高中数学课程的性质

    选项A、C、D都体现了高中数学课程的定位,高中数学课程面向全体学生,为不同兴趣和志向、不同发展方向、进入不同高校不同专业学习的学生提供适合他们的数学基础,高中数学课程为不同学生提供不同的基础。

  • 第2题:

    简述《普通高中数学课程标准(实验)》中必修课课程内容的确定的原则和选修课程内容确定的原则。


    答案:
    解析:
    本题主要考查普通高中数学课程标准(实验)》对必修课课程内容的确定的原则和选修课程内容确定的原则有具体论述。

    严格根据《普通高中数学课程标准》中对于必修课程的内容的进行解答,熟悉掌握该类问题。

  • 第3题:

    简述《普通高中数学课程标准(实验)》中必修课程内容确定的原则和选修课程内容确定的原则。


    答案:
    解析:
    必修课程内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要 的数学准备。
    选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素 养奠定基础。其中,系列1是为那些希望在人文、社会科学等方面发展的学生而设置的,系列2则是为那些希望 在理工、经济等方面发展的学生而设置的。系列1、系列2内容是选修系列课程中的基础性内容。系列3和系列4是为对数学有兴趣和希望进一步提高数学素养的学生而设置的,所涉及的内容反映了某些重要的数学思想, 有助于学生进一步打好数学基础,提高应用意识,有利于学生终身的发展,有利于扩展学生的数学视野,有利于 提高学生对数学的科学价值、应用价值、文化价值的认识。

  • 第4题:

    简述《普通高中数学课程标准(实验)》中必修课程和选修课程内容确定的原则。


    答案:
    解析:
    必修课程内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备。选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。其中,系列l是为那些希望在人文、社会科学等方面发展的学生而设置的,系列2则是为那些希望在理工、经济等方面发展的学生而设置的。系列l、系列2内容是选修系列课程中的基础性内容。系列3和系列4是为对数学有兴趣和希望进一步提高数学素养的学生而设置的,所涉及的内容反映了某些重要的数学思想,有助于学生进一步打好数学基础,提高应用意识,有利于学生终身的发展,有利于扩展学生的数学视野,有利于提高学生对数学的科学价值、应用价值、文化价值的认识。

  • 第5题:

    简述装配的地位和作用。


    正确答案: 装配是机电产品生产中必不可少的最后一道工序,没有装配就没有完整的产品,它具有重要的地位和作用。
    (1)装配将最终检验零部件的制造质量。
    (2)装配可以发现生产薄弱环节。
    (3)装配将最终影响产品质量。

  • 第6题:

    下列关于高中数学基础性的说法不正确的是()。

    • A、高中数学课程为学生进一步学习提供了必要的数学准备
    • B、高中数学课程为不同学生提供相同的基础
    • C、高中数学课程体现时代性、基础性和选择性
    • D、高中数学课程要以学生的发展为本,尊重他们的个性发展

    正确答案:B

  • 第7题:

    下列关于高中数学课程结构的说法不正确的是()。

    • A、高中数学课程可分为必修与选修两类
    • B、高中数学选修课程包括4个系列的课程
    • C、高中数学必修课程包括5个模块
    • D、高中课程的组合具有固定性,不能发生改变

    正确答案:D

  • 第8题:

    如何把握高中数学课程的本质与适度的形式化?


    正确答案: 形式化是数学的特征之一,但是中学数学中的形式化受学生认知水平的限制。在高中数学课程中,适度形式化是必要的。例如,对于运算的学习,就要严格按照运算的定义,遵循运算律,过度形式化是不必要的。例如,对于几何、函数等内容,不需要过度形式化。对于几何,不必严格遵循几何的公理系统,而要关注几何直观。对于函数,也不必从集合、关系的角度去展开等。因此,高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展背景、过程和本质,揭示人们探索真理的道路。

  • 第9题:

    问答题
    简述小学数学课程的性质和地位

    正确答案: 1)对学生发展具有特殊功能,是由数学的特点所赋予
    2)在培养人的理性思维和创新能力方面,具有不可替代的作用
    3)与其他课程的学习密切相关(理科课程)
    4)对青少年品格的形成,以及促进学生全面发展有着重要的作用
    解析: 暂无解析

  • 第10题:

    问答题
    简述高中数学课程中平面向量数量积的定义及相关的教学内容

    正确答案: 数量积定义:平面上两个向量a与b的数量积定义为a·b=,a,,b,cosq,其中q是两个向量之间的夹角。与平面向量相关的主要教学内容包括以下三方面:
    1.如果两个向量垂直,那么它们之间的夹角是直角cosq=0,因此a·b=0,反过来也对。说明两个向量垂直的充分必要条件是它们的数量积为0。
    2.容易知道向量的数量积满足条件(la)·b==l(a·b)=a·(lb),由此数量积可以利用坐标表示:如果x=(a,b),y=(c,d)则x·y=(ac,bd)。
    3.两个向量a与b的数量积几何意义是:a的长度与b在a上投影的长度的乘积。
    解析: 暂无解析

  • 第11题:

    单选题
    下列关于高中数学课程的变化内容,说法不正确的是()。
    A

    高中数学课程中的向量既是几何的研究对象,也是代数的研究对象

    B

    高中数学课程中,概率的学习重点是如何计数

    C

    算法是培养逻辑推理能力的非常好的载体

    D

    集合论是一个重要的数学分支


    正确答案: B
    解析: 高中数学课程中的向量既是几何的研究对象,也是代数的研究对象,向量是沟通代数与几何的一座天然桥梁;算法是培养逻辑推理能力的非常好的载体,在大学和中学数学教育中都发挥着重要的作用:集合论是一个重要的数学分支,教师要准确把握高中数学课程中集合这一内容的定位;在概率课中,学习的重点是如何理解随机现象而不是如何计数。故选B。

  • 第12题:

    单选题
    下列关于高中数学课程结构的说法不正确的是()。
    A

    高中数学课程可分为必修与选修两类

    B

    高中数学选修课程包括4个系列的课程

    C

    高中数学必修课程包括5个模块

    D

    高中课程的组合具有固定性,不能发生改变


    正确答案: C
    解析: 高中数学课程可分为必修与选修两类,必修课程由五个模块组成,选修课程包括四个系列。高中课程的组合具有一定的灵活性,不同的组合可以相互转换。学生在做出选择之后,可以根据自己的意愿和条件向学校提出申请调整,经过测试获得相应的学分即可转换。

  • 第13题:

    简述你对《普通高中数学课程标准》(实验)中“探索并掌握两点间的距离公式”这一目标的理解。


    答案:
    解析:
    “探索”是过程与方法目标行为动词,“掌握”是知识与技能目标行为动词。“探索和掌握两点间距离公式”这一目标的设置,要求学生不仅要记住该公式的内容,还需要掌握该公式的推导过程,联系知识问的内在关系,体会其中的数学思想,为进一步的学习提供必要的数学准备。 探索并掌握两点间的距离公式有助于学生认识数学内容之间的内在联系。两点间的距离公式是中学数学学习的主要内容之一,在高中数学中占有重要地位。探索两点间的距离公式的过程中需要数轴、直角坐标系、直角三角形、勾股定理等知识,而两点间的距离公式又是几何中最简单的一种距离,点到直线的距离、两条平行直线间的距离、两平行平面间的距离、异面直线公垂线段的长度等计算最终都可以归结为两点间的距离。学生经历探索并掌握两点间的距离公式的学习过程,能够更好地体会并理解这些知识点的内在联系,这对学生构建知识体系,增强学习数学的信心很有帮助。
    探索并掌握两点间的距离公式有助于学生体会数形结合思想,形成正确的数学观。探索两点间的距离公式经历将几何问题代数化的过程,用代数的语言描述几何要素及其关系。两点问的距离公式是将几何问题转化为代数问题的重要桥梁和工具。利用距离公式分析代数结果的几何意义,也有助于最终解决几何问题。引导学生经历这样的数形结合的过程,对发展学生的推理能力很有益处。

  • 第14题:

    简述高中数学课程的地位和作用。


    答案:
    解析:
    本题主要考查对《高中数学新课程标准》的理解。

    高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
    高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。
    高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。

  • 第15题:

    高中数学课程为什么要加入“微积分初步”?


    答案:
    解析:
    ①微积分的思想是非常重要的思想,它可以帮助我们了解函数的变化,刻画现实世界中的规律,在日常生活中,微积分的基本知识已经成为人们认识某些事物的常识。很多中学生中学毕业之后会直接进入工作岗位,希望学生通过微积分的学习.能用变化和运动的观点来看待数学世界和现实世界,能有一个更加广阔的数学视野。②在中学阶段所学到的相关的学科,比如物理、化学、生物、地理等,都有很多反映微积分思想的实例和案例,所以在数学上给出微积分的表述,对于理解这些实例和案例是必要的。
    ③直接介绍微积分思想的难度不大,能为中学生所接受。
    ④可以帮助学生了解导数和积分的丰富背景和应用,建立一些具体的、特殊的极限概念,初步形成对极限的感性认识,这些对于进一步学习微积分理论是有帮助的。
    ⑤微积分的产生在人类文明史上有着重要的作用。通过这部分内容的学习可以让学生更好地理解数学在人类进步和发展中不可缺少的作用。

  • 第16题:

    如何理解高中数学课程的过程性目标?


    正确答案: 把"过程与方法"作为课程目标是本次课程改革最大的变化之一。在以前的《大纲》中,都在不同程度上强调了"过程与方法"的重要性,但是,这次课程改革把过程与方法作为课程目标。这样,"过程与方法"不再是可有可无的东西,而是必须实现的基本目标,我们必须认识到这种变化不仅力度大,而且有非常重要的意义。实际上,在长期的教学活动中,优秀的教师不仅关注学生对知识技能的掌握,而且关注掌握知识技能的过程,包括知识的来龙去脉,结论的背景、产生过程和意义,获取知识的能力和方法等等。在数学知识技能中,蕴涵着一些重要的数学思想和方法。学习的目的,不仅在于掌握数学知识技能和结果,更重要的是经历形成这些数学知识技能的过程,体会其中所蕴涵的数学思想和方法,学会运用这些思想和方法去学习其他的知识,并能从中感悟数学的作用和价值,提高学生学习数学的兴趣,树立学生学好数学的信心。因此,在教学活动中,不仅要关注学生对知识技能的掌握,而且要特别关注掌握知识技能的过程。

  • 第17题:

    简述小学数学课程的性质和地位


    正确答案: 1)对学生发展具有特殊功能,是由数学的特点所赋予
    2)在培养人的理性思维和创新能力方面,具有不可替代的作用
    3)与其他课程的学习密切相关(理科课程)
    4)对青少年品格的形成,以及促进学生全面发展有着重要的作用

  • 第18题:

    高中数学课程中有哪几条主线?


    正确答案:高中数学课程中有六条主线:函数主线、运算主线、几何主线、算法主线、统计概率主线、应用主线。

  • 第19题:

    下列关于高中数学课程的变化内容,说法不正确的是()。

    • A、高中数学课程中的向量既是几何的研究对象,也是代数的研究对象
    • B、高中数学课程中,概率的学习重点是如何计数
    • C、算法是培养逻辑推理能力的非常好的载体
    • D、集合论是一个重要的数学分支

    正确答案:B

  • 第20题:

    在高中数学课程中为什么要讲微积分初步?


    正确答案:(1)微积分的思想是非常重要的思想,它可以帮助我们了解函数的变化,刻画现实世界中的规律。在日常生活中,微积分的基本知识已经成为人们认识某些事物的常识。很多中学生中学毕业之后会直接进入工作岗位,希望学生通过微积分的学习,能用变化和运动的观点来看待数学世界和现实世界,能有一个更加广阔的数学视野。
    (2)在中学阶段所学到的相关的学科,比如物理、化学、生物、地理等,都有很多反映微积分思想的实例和案例,所以在数学上给出微积分的表述,对于理解这些事例和案例是必要的。
    (3)直接介绍微积分的难度不大,能为中学生所接受。
    (4)可以帮助学生了解导数和积分的丰富背景和应用,建立一些具体的、特殊的极限概念,初步形成对极限的感性认识,这些对于进一步学习微积分理论是有帮助的。(5)微积分的产生在人类文明史上有着重要的作用。通过这部分内容的学习可以让学生更好地理解数学在人类进步和发展中不可缺少的作用。

  • 第21题:

    问答题
    如何理解高中数学课程的过程性目标?

    正确答案: 把"过程与方法"作为课程目标是本次课程改革最大的变化之一。在以前的《大纲》中,都在不同程度上强调了"过程与方法"的重要性,但是,这次课程改革把过程与方法作为课程目标。这样,"过程与方法"不再是可有可无的东西,而是必须实现的基本目标,我们必须认识到这种变化不仅力度大,而且有非常重要的意义。实际上,在长期的教学活动中,优秀的教师不仅关注学生对知识技能的掌握,而且关注掌握知识技能的过程,包括知识的来龙去脉,结论的背景、产生过程和意义,获取知识的能力和方法等等。在数学知识技能中,蕴涵着一些重要的数学思想和方法。学习的目的,不仅在于掌握数学知识技能和结果,更重要的是经历形成这些数学知识技能的过程,体会其中所蕴涵的数学思想和方法,学会运用这些思想和方法去学习其他的知识,并能从中感悟数学的作用和价值,提高学生学习数学的兴趣,树立学生学好数学的信心。因此,在教学活动中,不仅要关注学生对知识技能的掌握,而且要特别关注掌握知识技能的过程。
    解析: 暂无解析

  • 第22题:

    问答题
    简述高中数学课程的基本教学目标。

    正确答案: 高中数学课程的基本目标是:构建共同的基础,提供发展平台。在义务教育阶段之后,为使学生适应现代生活和未来的发展提供更高水平的数学基础,使他们获得更高的数学素养。高中阶段的数学将为学生提供多样的课程,适应个性选择,为学生提供更广泛的发展空间。
    课程设置总目标的中心点是:突出课程的基础性,把中小学数学课程作为各种人才发展的基础准备和基本训练。把中小学数学知识和能力作为一种社会文化、作为现代社会公民必备的科学素质而普及到每一个学生。
    这样的数学课程应是一种大众数学,课程内容的覆盖面、难度、要求等都应该控制在一个恰当的程度。
    课程设置总目标一方面要适应社会发展的要求,另一方面要适应数学科学自身发展的要求。
    解析: 暂无解析

  • 第23题:

    单选题
    高中数学课程分必修和选修。必修课由几个模块组成:()
    A

     4

    B

     5


    正确答案: B
    解析: 暂无解析

  • 第24题:

    单选题
    下列关于高中数学基础性的说法不正确的是()。
    A

    高中数学课程为学生进一步学习提供了必要的数学准备

    B

    高中数学课程为不同学生提供相同的基础

    C

    高中数学课程体现时代性、基础性和选择性

    D

    高中数学课程要以学生的发展为本,尊重他们的个性发展


    正确答案: C
    解析: 选项A、C、D都体现了高中数学课程的定位,高中数学课程面向全体学生,为不同兴趣和志向、不同发展方向、进入不同高校不同专业学习的学生提供适合他们的数学基础,为不同的学生提供的基础是不同的,所以选项B是错误的。故选B。