下列关于高中数学课程的变化内容,说法不正确的是( )A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象 B.高中数学课程中,概率的学习重点是如何计数 C.算法是培养逻辑推理能力的非常好的载体 D.集合论是一个重要的数学分支

题目
下列关于高中数学课程的变化内容,说法不正确的是( )

A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象
B.高中数学课程中,概率的学习重点是如何计数
C.算法是培养逻辑推理能力的非常好的载体
D.集合论是一个重要的数学分支

相似考题
参考答案和解析
答案:C
解析:
高中数学课程中向量既是几何的研究对象,也是代数的研究对象,向量是沟通几何与代数的一座天然桥梁;算法是培养逻辑推理能力的非常好的载体,在大学和中学数学教育中都发挥着重要的作用;集合论是一个重要的数学分支,教师要准确把握高中数学课程中集合这一内容的定位;在概率课中,学习的重点是如何理解随机现象而不是如何计数。
更多“下列关于高中数学课程的变化内容,说法不正确的是( )”相关问题
  • 第1题:

    关于合同的变更,下列说法不正确的是()。

    A、合同变更是合同关系的局部变化
    B、合同变更是合同内容的变化
    C、履行时间、地点、方式的变化属于合同变更
    D、合同变更是合同性质的变化

    答案:D
    解析:
    本题的考点为合同的变更。合同变更是合同关系的局部变化,如标的数量的增减、价款的变化、履行时间、地点、方式的变化等,是合同的内容的变更。指在合同成立以后至未履行或者未完全履行之前,当事人经过协议对合同的内容进行修改和补充。此概念需要与合同性质的变化相区别,例如买卖变为赠与,前后合同关系失去了同一性,此为合同的更新或更改。

  • 第2题:

    下列关于高中数学基础性的说法不正确的是( )

    A.高中数学课程为学生进一步学习提高了必要的数学准备
    B.高中数学为不同学生提供相同的基础
    C.高中数学课程体现时代性、基础性和选择性
    D.高中数学课程要以学生的发展为本,尊重他们的个性发展

    答案:B
    解析:
    本题考查高中数学课程的性质

    选项A、C、D都体现了高中数学课程的定位,高中数学课程面向全体学生,为不同兴趣和志向、不同发展方向、进入不同高校不同专业学习的学生提供适合他们的数学基础,高中数学课程为不同学生提供不同的基础。

  • 第3题:

    简述高中数学课程的地位和作用。


    答案:
    解析:
    本题主要考查对《高中数学新课程标准》的理解。

    高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
    高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。
    高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。

  • 第4题:

    简述《普通高中数学课程标准(实验)》中必修课程和选修课程内容确定的原则。


    答案:
    解析:
    必修课程内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备。选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。其中,系列l是为那些希望在人文、社会科学等方面发展的学生而设置的,系列2则是为那些希望在理工、经济等方面发展的学生而设置的。系列l、系列2内容是选修系列课程中的基础性内容。系列3和系列4是为对数学有兴趣和希望进一步提高数学素养的学生而设置的,所涉及的内容反映了某些重要的数学思想,有助于学生进一步打好数学基础,提高应用意识,有利于学生终身的发展,有利于扩展学生的数学视野,有利于提高学生对数学的科学价值、应用价值、文化价值的认识。

  • 第5题:

    下列关于高中数学基础性的说法不正确的是()。

    • A、高中数学课程为学生进一步学习提供了必要的数学准备
    • B、高中数学课程为不同学生提供相同的基础
    • C、高中数学课程体现时代性、基础性和选择性
    • D、高中数学课程要以学生的发展为本,尊重他们的个性发展

    正确答案:B

  • 第6题:

    下列关于高中数学课程结构的说法不正确的是()。

    • A、高中数学课程可分为必修与选修两类
    • B、高中数学选修课程包括4个系列的课程
    • C、高中数学必修课程包括5个模块
    • D、高中课程的组合具有固定性,不能发生改变

    正确答案:D

  • 第7题:

    强调数据处理能力是高中数学课程的一个变化,有人说统计的概念不难掌握,请谈谈在教学中应如何看待统计概念的定义。


    正确答案: 高中统计的学习,本质上是统计活动的学习,而不是概念和公式的学习。统计内容的教学不应该单纯地讲授概念的定义,图表的制作,数字特征的计算,机械地套用公式。而应该从提取信息的角度比较各种方法的优劣,了解它们的适用范围,让学生通过对实际问题的解决来理解统计的思想,而不是死背公式和定义。
    (1)关注三种抽样方法的差别和不同的实用范围;
    (2)应侧重于了解统计图表能告诉我们何种信息和理解不同统计图表的特点;
    (3)让学生了解数据的数字特征的作用和意义。

  • 第8题:

    单选题
    属于高中数学课程的函数内容是:()
    A

    指数函数

    B

    对数函数

    C

    多项式函数


    正确答案: B
    解析: 暂无解析

  • 第9题:

    问答题
    简述《数学课程标准》的内容要求及具体变化。

    正确答案:
    (1)《数学课程标准》的内容要求:主要包括“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容标准。
    ①“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
    ②“空间与图形”的内容主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。
    ③“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测。
    ④“实践与综合应用”将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力,加深对“数与代数”“空间与图形”“统计与概率”内容的理解,体会各部分内容之间的联系。
    (2)《数学课程标准》的具体变化:“几何与图形”结构的变化表现在将实验稿中分四个方面对内容进行的要求(即“图形的认识”“图形与变换”“图形与坐标”“图形与证明”)改为三个方面展开内容要求(即“图形的性质”“图形的变化”“图形与坐标”)。增幅较大的部分是“统计与概率”,增加了“能借助计算器进行较复杂的运算,能选择合适的估算方法”等内容,大力精简了缺乏实际背景的技巧性过强的算术应用题,强调培养、提高学生的推理能力、抽象能力、想象力、创造力。
    解析: 暂无解析

  • 第10题:

    问答题
    简述高中数学课程的基本教学目标。

    正确答案: 高中数学课程的基本目标是:构建共同的基础,提供发展平台。在义务教育阶段之后,为使学生适应现代生活和未来的发展提供更高水平的数学基础,使他们获得更高的数学素养。高中阶段的数学将为学生提供多样的课程,适应个性选择,为学生提供更广泛的发展空间。
    课程设置总目标的中心点是:突出课程的基础性,把中小学数学课程作为各种人才发展的基础准备和基本训练。把中小学数学知识和能力作为一种社会文化、作为现代社会公民必备的科学素质而普及到每一个学生。
    这样的数学课程应是一种大众数学,课程内容的覆盖面、难度、要求等都应该控制在一个恰当的程度。
    课程设置总目标一方面要适应社会发展的要求,另一方面要适应数学科学自身发展的要求。
    解析: 暂无解析

  • 第11题:

    单选题
    下列关于高中数学课程的变化内容,说法不正确的是()。
    A

    高中数学课程中的向量既是几何的研究对象,也是代数的研究对象

    B

    高中数学课程中,概率的学习重点是如何计数

    C

    算法是培养逻辑推理能力的非常好的载体

    D

    集合论是一个重要的数学分支


    正确答案: B
    解析: 高中数学课程中的向量既是几何的研究对象,也是代数的研究对象,向量是沟通代数与几何的一座天然桥梁;算法是培养逻辑推理能力的非常好的载体,在大学和中学数学教育中都发挥着重要的作用:集合论是一个重要的数学分支,教师要准确把握高中数学课程中集合这一内容的定位;在概率课中,学习的重点是如何理解随机现象而不是如何计数。故选B。

  • 第12题:

    多选题
    列入高中数学课程数列内容是:()
    A

    等差数列

    B

    差分数列

    C

    递归数列


    正确答案: A,B
    解析: 暂无解析

  • 第13题:

    以高中阶段的函数概念为例,阐述数学课程内容的呈现如何体现螺旋上升的原则


    答案:
    解析:
    数学中有一些重要内容、方法、思想是需要学生经历较长的认识过程,逐步理解和掌握的,如函数、概率、数形结合、逻辑推理、模型思想等。因此,教材在呈现相应的数学内容与思想方法时,应根据学生的年龄特征与知识积累,在遵循科学性的前提下,采用逐级递进、螺旋上升的原则。螺旋上升是指在深度、广度等方面都要有实质性的变化,即体现出明显的阶段性要求。
    例如,函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系.同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。因此,教材对函数内容的编排应体现螺旋上升的原则,分阶段逐渐深化。依据内容标准的要求,教材可以将函数内容的学习分为三个主要阶段:
    第一阶段,通过一些具体实例,体会数集之间的一种特殊的对应关系。从学生已掌握的具体函数和函数的描述性定义人手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的函数,构建函数的一般概念。
    第二阶段,再通过对指数函数、对数函数等具体函数的研究,加深学生对函数概念的理解。引导学生不断体验函数是描述客观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用。
    第三阶段,鼓励学生运用计算器、计算机画出指数函数、对数函数等的图象,探索、比较它们的变化规律.研究函数的性质,求方程的近似解等,在这个过程中反复体会函数的概念.才能真正掌握.灵活应用。

  • 第14题:

    简述《普通高中数学课程标准(实验)》中必修课课程内容的确定的原则和选修课程内容确定的原则。


    答案:
    解析:
    本题主要考查普通高中数学课程标准(实验)》对必修课课程内容的确定的原则和选修课程内容确定的原则有具体论述。

    严格根据《普通高中数学课程标准》中对于必修课程的内容的进行解答,熟悉掌握该类问题。

  • 第15题:

    简述《普通高中数学课程标准(实验)》中必修课程内容确定的原则和选修课程内容确定的原则。


    答案:
    解析:
    必修课程内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要 的数学准备。
    选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素 养奠定基础。其中,系列1是为那些希望在人文、社会科学等方面发展的学生而设置的,系列2则是为那些希望 在理工、经济等方面发展的学生而设置的。系列1、系列2内容是选修系列课程中的基础性内容。系列3和系列4是为对数学有兴趣和希望进一步提高数学素养的学生而设置的,所涉及的内容反映了某些重要的数学思想, 有助于学生进一步打好数学基础,提高应用意识,有利于学生终身的发展,有利于扩展学生的数学视野,有利于 提高学生对数学的科学价值、应用价值、文化价值的认识。

  • 第16题:

    如何理解高中数学课程的过程性目标?


    正确答案: 把"过程与方法"作为课程目标是本次课程改革最大的变化之一。在以前的《大纲》中,都在不同程度上强调了"过程与方法"的重要性,但是,这次课程改革把过程与方法作为课程目标。这样,"过程与方法"不再是可有可无的东西,而是必须实现的基本目标,我们必须认识到这种变化不仅力度大,而且有非常重要的意义。实际上,在长期的教学活动中,优秀的教师不仅关注学生对知识技能的掌握,而且关注掌握知识技能的过程,包括知识的来龙去脉,结论的背景、产生过程和意义,获取知识的能力和方法等等。在数学知识技能中,蕴涵着一些重要的数学思想和方法。学习的目的,不仅在于掌握数学知识技能和结果,更重要的是经历形成这些数学知识技能的过程,体会其中所蕴涵的数学思想和方法,学会运用这些思想和方法去学习其他的知识,并能从中感悟数学的作用和价值,提高学生学习数学的兴趣,树立学生学好数学的信心。因此,在教学活动中,不仅要关注学生对知识技能的掌握,而且要特别关注掌握知识技能的过程。

  • 第17题:

    高中数学课程中有哪几条主线?


    正确答案:高中数学课程中有六条主线:函数主线、运算主线、几何主线、算法主线、统计概率主线、应用主线。

  • 第18题:

    下列关于高中数学课程的变化内容,说法不正确的是()。

    • A、高中数学课程中的向量既是几何的研究对象,也是代数的研究对象
    • B、高中数学课程中,概率的学习重点是如何计数
    • C、算法是培养逻辑推理能力的非常好的载体
    • D、集合论是一个重要的数学分支

    正确答案:B

  • 第19题:

    高中数学课程中关于椭圆的定义方式是()。

    • A、关系定义法t
    • B、描述性定义法
    • C、解释外延定义法
    • D、发生式定义法

    正确答案:D

  • 第20题:

    问答题
    简述高中数学课程中平面向量数量积的定义及相关的教学内容

    正确答案: 数量积定义:平面上两个向量a与b的数量积定义为a·b=,a,,b,cosq,其中q是两个向量之间的夹角。与平面向量相关的主要教学内容包括以下三方面:
    1.如果两个向量垂直,那么它们之间的夹角是直角cosq=0,因此a·b=0,反过来也对。说明两个向量垂直的充分必要条件是它们的数量积为0。
    2.容易知道向量的数量积满足条件(la)·b==l(a·b)=a·(lb),由此数量积可以利用坐标表示:如果x=(a,b),y=(c,d)则x·y=(ac,bd)。
    3.两个向量a与b的数量积几何意义是:a的长度与b在a上投影的长度的乘积。
    解析: 暂无解析

  • 第21题:

    填空题
    数学探究、()、数学文化是贯彻于整个高中数学课程的重要内容,这些内容不单独设置,渗透在每个模块或专题中。

    正确答案: 数学建模
    解析: 暂无解析

  • 第22题:

    问答题
    强调数据处理能力是高中数学课程的一个变化,有人说统计的概念不难掌握,请谈谈在教学中应如何看待统计概念的定义。

    正确答案: 高中统计的学习,本质上是统计活动的学习,而不是概念和公式的学习。统计内容的教学不应该单纯地讲授概念的定义,图表的制作,数字特征的计算,机械地套用公式。而应该从提取信息的角度比较各种方法的优劣,了解它们的适用范围,让学生通过对实际问题的解决来理解统计的思想,而不是死背公式和定义。
    (1)关注三种抽样方法的差别和不同的实用范围;
    (2)应侧重于了解统计图表能告诉我们何种信息和理解不同统计图表的特点;
    (3)让学生了解数据的数字特征的作用和意义。
    解析: 暂无解析

  • 第23题:

    单选题
    下列关于高中数学课程结构的说法不正确的是()。
    A

    高中数学课程可分为必修与选修两类

    B

    高中数学选修课程包括4个系列的课程

    C

    高中数学必修课程包括5个模块

    D

    高中课程的组合具有固定性,不能发生改变


    正确答案: C
    解析: 高中数学课程可分为必修与选修两类,必修课程由五个模块组成,选修课程包括四个系列。高中课程的组合具有一定的灵活性,不同的组合可以相互转换。学生在做出选择之后,可以根据自己的意愿和条件向学校提出申请调整,经过测试获得相应的学分即可转换。

  • 第24题:

    单选题
    下列关于高中数学基础性的说法不正确的是()。
    A

    高中数学课程为学生进一步学习提供了必要的数学准备

    B

    高中数学课程为不同学生提供相同的基础

    C

    高中数学课程体现时代性、基础性和选择性

    D

    高中数学课程要以学生的发展为本,尊重他们的个性发展


    正确答案: C
    解析: 选项A、C、D都体现了高中数学课程的定位,高中数学课程面向全体学生,为不同兴趣和志向、不同发展方向、进入不同高校不同专业学习的学生提供适合他们的数学基础,为不同的学生提供的基础是不同的,所以选项B是错误的。故选B。