初中数学《不等式的性质》一、考题回顾二、考题解析 【教学过程】 (一)引入新课 复习导入,先复习等式的性质,并提问学生:不等式是否也有类似的性质,进而引出这节课的课题——不等式的性质。 (二)探索新知 PPT展示4个式子,分别为15___12,15+3___12+3,15-3___12-3,15×3___12×3。 学生活动:填上符号,并观察前3个式子,猜想对于一般的不等式是否也有这样的性质。 教师提示学生类比等式性质1,总结不等式的这条性质,并及时纠正问题(可设置纠错环节),得到性质1:不等式两边都加上

题目
初中数学《不等式的性质》

一、考题回顾



二、考题解析
【教学过程】
(一)引入新课
复习导入,先复习等式的性质,并提问学生:不等式是否也有类似的性质,进而引出这节课的课题——不等式的性质。
(二)探索新知
PPT展示4个式子,分别为15___12,15+3___12+3,15-3___12-3,15×3___12×3。
学生活动:填上符号,并观察前3个式子,猜想对于一般的不等式是否也有这样的性质。
教师提示学生类比等式性质1,总结不等式的这条性质,并及时纠正问题(可设置纠错环节),得到性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
接着由学生观察最后一个式子,小组活动对比等式两边都城乘(或除)同一个数的性质,说一说不等式的性质。
学生活动,思考将题中的3换成-3,不等式的性质是否成立?并猜想不等式的性质应该怎么表述。
预设学生能够回答不等式的性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变。性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变。
由学生自由地列举一些符合不等式性质的式子,并与同桌分享。
(三)课堂练习
教师提问学生:不等式的性质与等式的性质有何区别?
学生思考后给出答案,由教师总结:乘除法时,要认清乘(除)的是正数还是负数,负数不等号方向要改变。
尝试利用不等式的性质解-4x>3
并说一说用的哪一条性质。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:不等式的3条性质,等式性质与不等式性质的异同点。
课后作业:
思考不等式的性质除了这3条还有没有其他的性质。
【板书设计】
? ? ?不等式的性质
? ? ?性质1:
? ? ?性质2:
? ? ?性质3:
? ? ?异同点:

1.本节课的教学目标是什么?
2.本节课是用什么方法进行导入新课的?这样导入有什么作用?


相似考题
更多“初中数学《不等式的性质》 ”相关问题
  • 第1题:

    初中数学《二次根式的运算》

    一、考题回顾





    答案:
    解析:

  • 第2题:

    初中数学《勾股定理的逆定理》
    一、考题回顾



    答案:
    解析:
    二、考题解析
    【教学过程】
    (一)引入新课
    引导学生复习勾股定理,并向学生提问:怎么画一个直角三角形?
    预设:用三角尺。
    提问:如果不用三角尺,怎么画直角三角形?并给学生出示古埃及人画直角三角形的情景,并引导学生思考:其中蕴含着什么规律呢?进而引出课题。
    (二)探索新知
    对于导入中的问题,教师可先引导学生思考3,4,5有什么样的关系?预设:32+42=52。
    再继续出示几组数据:2.5,6,6.5以及4,7.5,8.5引导学生采用尺规作图。并观察做出的三角形的形状。
    引导学生大胆猜想,得到:如果三角形的三边长分别为a,b,c,满足a2+b2=c2,那这个三角形就是一个直角三角形。
    提问:那怎么证明这个猜想是正确的?
    引导学生采用尺规作图的方式,做出和已知三角形三边相同的直角三角形,利用勾股定理得出三角形的对应的三边相等,进而两个三角形全等,也就证明上述的猜想是正确的。
    引导学生观察勾股定理和命题2,说说两个命题有什么样的关系?
    预设:两个命题的条件和结论是相反。
    进而给出原逆命题的概念。并给说明上述的发现也是一个定理,称为勾股定理的逆定理。
    提问:原命题正确,逆命题一定正确?
    预设:对顶角相等,但是两个角相等,不一定是对顶角。
    最后,师生共同得出:原命题正确,逆命题不一定正确,只有正确的逆命题才能叫做原命题的逆定理。
    (三)课堂练习
    判断由线段a,b,c组成的三角形是不是直角三角形。
    (1)a=15,b=8,c=17;(2)a=13,b=14,c=15。
    (四)小结作业
    提问:今天有什么收获?
    课后作业:课后作业1-3。
    【板书设计】




    【答辩题目解析】
    1.谈一谈勾股定理在初中教材中的地位?
    【参考答案】
    勾股定理是初中几何中几个重要定理之一。它揭示了直角三角形三边的某种数量关系。勾股定理是建立在三角形、全等三角形、等腰三角形等有关知识的基础之上,同时也是初三几何中解直角三角形及圆中有关计算的必备知识。更重要的是,纵观整个初中数学,勾股定理架起了代数与几何之间的桥梁。勾股定理在数学理论体系中的地位举足轻重,在日常生活、工农业生产中,应用极为广泛。就学生而言,对勾股定理学习的好坏将直接影响到他们后续数学的学习。
    2.教学过程中你主要设置了哪些问题,目的是什么?
    【参考答案】
    第一个问题:把一根长绳打上13个绳结,以3、4、5个结间距为边长组成的三角形中就有一个是直角。用这样的绳结组成的三角形是直角三角形么?
    设计意图:通过这样的古代数学问题激发学生的学习兴趣,从而引出本节课的课题《勾股定理的逆定理》。
    第二个问题:动手操作导入问题以及2.5,6,6.5;6,8,10能否组成直角三角形?根据以上结论能得出什么猜想?
    设计意图:鼓励学生动手探究提升综合实践能力,进一步根据事实作出猜想提升合情推理能力。
    第三个问题:这个命题正确么?
    设计意图:鼓励学生对猜想进行证明养成良好的反思质疑的学习习惯并进一步提升演绎推理能力。

  • 第3题:

    “基本不等式”是高中数学教学中的重要内容,请完成下列任务:

    (1)在“基本不等式”起始课的“教学重点”设计中,有两种方案:

    ①强调基本不等式在求数值中的应用,将基本不等式的应用作为重点。

    ②强调基本不等式的背景,过程与意义,将学生感受和体验“基本不等式”中“基本”的意义作为重点。

    你赞同哪种方案?简述理由。(10分)

    (3)为了让高中生充分认识“基本不等式”中“基本”的意义,作为教师应该对此有多个维度的理解,请至少从两个维度谈谈你对“基本”意义的认识。(10分)


    答案:
    解析:
    本题主要以高中数学教学中的重要内容之一“基本不等式”为例,考查均值不等式的基础知识,高中数学课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。

    (1)首先回答两种方案相比较更赞同哪个方案,然后说出赞同的理由。

    这两个不等式的几何解释,可以结合几何图形进行详细的阐述,这样更加直观。

    (3)“基本不等式”是许多其他知识点理解和求证等的基础,可以从不同的角度来说明“基本不等式”中“基本”的意义,如求证不等式中的应用,其他重要不等式推广中的应用等等,但至少要举出两个方面的例子。

  • 第4题:

    简述不等式在中学数学课程中的作用。


    答案:
    解析:
    不等式(组)是刻两不等关系的数学模型,它有广泛的应用,课程的教学目标主要是使学生学习不等式的基础知识以及一类最简单的不等式(组)——一元一次不等式(组),并运用它们解决一些数学问题和实际问题,在学习不等式的性质和一元一次不等式(组)的解法时,与不等式的性质和方程(组)的解法进行类比,有益于对知识的理解和掌握。解方程组是逐步将方程化为x=a的形式,类似地,解不等式是逐步将不等式化为x>a或x<a的形式,两者都运用了化归的思想。

  • 第5题:

    在一些初中数学教材中,“函数”内容被安排于方程、不等式等内容之后集中学习。谈谈你对这种设计的看法。


    答案:
    解析:
    这种设计是不合理的。函数内容学习的主要目标不仅仅是掌握知识本身,还包括认识有关现象、学会应用相关知识解决问题的方法等:函数知识本身的内涵不单纯是定义、公式、定理,还有函数内部不同部分之间的联系:代数式、方程、不等式与函数相关部分的联系应当与学习这些知识的过程相联系,有助于学生理解它们和函数本身;学生认识函数的主要认知过程要从感性到理性,而不能仅仅是抽象符号的运算等。

  • 第6题:

    初中教学中的数轴内容反应的数学思想是()。


    正确答案:数形结合思想

  • 第7题:

    约束条件可以用数学()或不等式来表示。


    正确答案:等式

  • 第8题:

    填空题
    把数学不等式0

    正确答案: x>0&&x<13
    解析: 暂无解析

  • 第9题:

    问答题
    初中数学课程的性质是什么?

    正确答案:
    义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。
    (1)基础性包括初中阶段的数学课程中应当有大量的内容是未来公民在日常生活中必须要用到的;初中阶段的教育是每一个学生必须经历的基础教育阶段,它将为其后续生存、发展打下必要的基础;由于数学学科是其他科学的基础,因此数学课程内容也是学生在初中阶段学习其他课程的必要基础。
    (2)普及性包括初中阶段的数学课程应当在适龄少年中得到普及,即每一个适龄的学生都有充分的机会学习它;初中数学课程内容应当能够为所有适龄学生在具备相应学习条件的前提下,通过学生自己的努力而掌握。
    (3)发展性是指数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。
    解析: 暂无解析

  • 第10题:

    填空题
    初中教学中的数轴内容反应的数学思想是()。

    正确答案: 数形结合思想
    解析: 暂无解析

  • 第11题:

    填空题
    在高中“不等式选讲”的教学中,应强调不等式及其证明的()与背景,以加深学生对这些不等式的数学本质的理解。

    正确答案: 几何意义
    解析: 暂无解析

  • 第12题:

    单选题
    下列不属于《义务教育数学课程标准(2011年版)》中初中数学课程“基础性”内涵的是(  )。
    A

    初中阶段的数学课程中有大量的内容是未来公民在日常生活中必须用到的

    B

    初中阶段的教育是每一个学生必须经历的基础教育阶段,它将为其后续生存、发展打下必要的基础

    C

    初中数学课程是为即将结束义务教育阶段的初中学生谋求明日的发展

    D

    数学课程内容是学生在初中阶段学习其他课程的必要基础


    正确答案: B
    解析:
    C项显然是属于初中数学课程“发展性”的含义。“基础性”的内涵是初中阶段的数学课程中有大量的内容是未来公民在日常生活中必须用到的,是学生在初中阶段学习其他课程的必要基础,并为每一个学生必须经历的基础教育阶段,它将为其后续生存、发展打下必要的基础。

  • 第13题:

    初中数学《科学计数法》
    一、考题回顾



    答案:
    解析:
    二、考题解析
    【教学过程】
    (一)引入新课
    用多媒体出示图片,观察人口数、地球半径数和光的速度,提问:大家观察一下这些数字有什么样的特点?如何去简便的进行表示?
    引出标题《科学记数法》。



    【答辩题目解析】
    1.如何用科学记数法表示近似数?
    【参考答案】
    在进行数的改写,规定了有效数字位数时,需使用科学记数法,从第一位非零数字开始算起,后面的都是有效数字,注意末尾的零也是有效数字,故可以用科学记数法表示近似数。
    2.在本节课的教学过程中,你是如何设计探究科学记数法的书写形式的?
    【参考答案】
    为了实现教学目标,突出重点、突破难点,我将采取讲授式、讨论式、启发式的教学方法。由上节课学习的乘方入手并指导学生独立探索、合作交流、分析归纳的学习方法进行学习:回顾10的幂指数与运算结果中的0的个数关系,借助10的幂的形式来表示大数,从而引出科学记数法的概念。让学生通过多种感官参与到数学活动中去,提升学生对知识点的理解与掌握程度,进而完成对科学记数法的学习。

  • 第14题:

    初中数学《三角函数》
    一、考题回顾



    答案:
    解析:
    二、考题解析
    【教学过程】



    【板书设计】




    【答辩题目解析】



    【参考答案】
    科学合理的教学方法能使教学效果事半功倍,达到教学和谐的完美统一。基于此,本节课采用讲授法、练习法、小组讨论法相结合的教学方法。
    本节课教学重点是三角函数定义及概念的学习,并且需要结合题目适当练习,因此讲授法结合练习法的方式非常适合本节课的教学。并且小组讨论法能够充分发挥学生的主体性,讲解完正弦的概念后再结合图示,学生通过讨论的形式能够正确总结出正弦的表达式,也便于学生养成乐于与人养成合作的良好心态。

  • 第15题:

    函数是中学数学课程的主线,请结合实例谈谈如何用函数的观点来认识中学数学课程中的方程、不等式、数列等内容。


    答案:
    解析:
    本题主要考查函数在整个中学数学课程中,与方程、不等式、数列等内容的密切关系。

  • 第16题:

    下列不属于《义务教育数学课程标准(2011年版)》中初中数学课程“基础性,’内涵的是( )。

    A、初中阶段的数学课程中有大量的内容是未来公民在日常生活中必须用到的
    B、初中阶段的教育是每一个学生必须经历的基础教育阶段,它将为其后续生存、发展打下必要的基础
    C、初中数学课程是为即将结束义务教育阶段的初中学生谋求明13的发展
    D、数学课程内容是学生在初中阶段学习其他课程的必要基础

    答案:C
    解析:
    选项C属于初中数学课程“发展性”的含义。

  • 第17题:

    函数知识一直是中学代数内容的主线。是研究代数、三角函数、数列、方程和不等式等初等数学内容的基础,函数思想又是数学解题中的重要思想,这就决定了函数在中学数学中的重要地位。
    请说明初中函数内容教学的要求,并结合自己的教学,谈谈利用函数思想解决问题时,重点要注意的问题是什么 并举出两个你印象最为深刻的利用函数思想解题的例子。


    答案:
    解析:
    初中函数的要求:①能探索具体问题中的数量关系和变化规律;②了解常量、变量的意义,了解函数概念和表示方法;③能结合图象分析,能用适当函数表示刻画某些实际问题中变量之间的关系;④对具体的一次函数、二次函数、反比例函数体会意义,画出图象,确定解析式、能利用函数解决一些实际问题。
    利用函数思想解决问题时要注意的问题是:①函数知识的横向、纵向联系;②把函数、方程、不等式看成一个整体:③将函数性质、特征与图象紧密结合;④二次函数的综合运用;⑤实际问题通过建立函数模型解决等。

  • 第18题:

    初中数学实验教学是一种教与学的活动方式,数学实验是数学教学的一个环节,但不是整个的教学过程。


    正确答案:正确

  • 第19题:

    把数学不等式0


    正确答案:x>0&&x<13

  • 第20题:

    单选题
    下列不属于《义务教育数学课程标准(2011年版)》中“数与代数”领域学习内容的是(  )。
    A

    有理数、无理数的概念、性质与运算

    B

    代数式的概念、性质和基本运算

    C

    反比例函数

    D

    一元三次不等式的解法


    正确答案: A
    解析:
    “数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等,一元三次不等式的解法不属于初中“数与代数”领域的学习内容,故选D项。

  • 第21题:

    问答题
    简述初中数学课程的基本理念。

    正确答案:
    初中数学课程的基本理念包括:
    (1)义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
    (2)课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系;呈现应注意层次性和多样性。
    (3)数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。并且教学活动是师生积极参与、交往互动、共同发展的过程,有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
    (4)学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学,应建立目标多元、方法多样的评价体系。对数学学习的评价要关注学习结果,更要关注他们的学习过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度。帮助学生认识自我,建立信心。
    (5)信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况,合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。
    解析: 暂无解析

  • 第22题:

    填空题
    约束条件可以用数学()或不等式来表示。

    正确答案: 等式
    解析: 暂无解析

  • 第23题:

    问答题
    简述初中数学新课程教学内容的特点。

    正确答案:
    (1)教学内容过程化。数学教学是数学活动的教学,那么“内容”就是“数学活动的基本线索”。在数学活动中,四个目标都将在主体参与的碰撞和生成活动中形成。
    (2)教学内容综合化。课程标准不刻意强调追求内容的完整和体系的严谨,而是强调要“对人的发展有十分重要的作用”,强调“知识与技能的学习必须有利于其他目标的实现”。
    (3)教学内容现代化。新课程改变了“繁、难、窄、旧”的现状,建立了“新、宽、实”的合理内容体系。
    (4)教学不再是学生被动地接受知识的过程,而是师生共同探讨的互动过程。
    (5)教师在关注学生“双基”的同时,开始关注学生学习习惯、学习方法和学习能力的培养。
    (6)课堂教学更加重视教学情景的创设,重视学生好奇心、求知欲和学习兴趣的激发。
    (7)重视教学民主、平等、和谐的师生关系的建立。
    (8)重视课堂组织形式的多样化。
    (9)重视问题的设计和提出,学生有了交流、讨论、动手、观察、探索的机会;重视了现代化教学手段的应用。
    解析: 暂无解析