更多“若有,则当x→a 时,f(x)是: ”相关问题
  • 第1题:

    设函数f(x)在x=a的某个邻域内连续,且f(a)为极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )


    答案:C
    解析:

  • 第2题:

    设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。

    A.(x-a)[f(x)-f(a)]≥0
    B.(x-a)[f(x)-f(a)]≤0
    C.
    D.

    答案:C
    解析:

  • 第3题:

    若有则当x→a 时,f(x)是:
    A.有极限的函数 B.有界函数
    C.无穷小量 D.比(x-a)高阶的无穷小


    答案:D
    解析:
    提示:由极限运算法则,答案A、B、C均不成立,利用两个无穷小比较知识,当x→a时,
    称在x→a时,a是β的高阶无穷小,所以答案D成立。f(x)是比(x-a)高阶的无穷小。

  • 第4题:

    设函数y=f(x)的导函数,满足f′(一1)=0,当x<-l时,f′(x)<0;当x>-l时,f′(x)>0.则下列结论肯定正确的是( ).《》( )

    A.x=-1是驻点,但不是极值点
    B.x=-1不是驻点
    C.x=-1为极小值点
    D.x=-1为极大值点

    答案:C
    解析:

  • 第5题:

    设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )

    A.f(x)g(b)>f(b)g(x)
    B.f(x)g(a)>f(a)g(x)
    C.f(x)g(x)>f(b)g(b)
    D.f(x)g(x)>f(a)g(a)

    答案:A
    解析:

  • 第6题:

    设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )。

    A.3
    B.1
    C.-1
    D.-3

    答案:D
    解析:
    因为设f(x)为定义在R上的奇函数,故f(0)=20+2xO+b=0,得6=-1,即当x≥0时f(x)=2x+2x-1,故,f(1)=21+2x1-1=3,故f(-1)=f(1)=-3。

  • 第7题:

    设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是奇函数时,下面结论正确的是()。

    • A、F(x)是偶函数
    • B、F(x)是奇函数
    • C、F(x)可能是奇函数,也可能是偶函数
    • D、F(x)是否为奇函数不能确定

    正确答案:A

  • 第8题:

    设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是偶函数时,下面结论正确的是()。

    • A、F(x)是偶函数
    • B、F(x)是奇函数
    • C、F(x)可能是奇函数,也可能是偶函数
    • D、F(x)是否是偶函数不能确定

    正确答案:D

  • 第9题:

    设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()

    • A、f(x)=g(f(x))
    • B、g(x)=f(f(x))
    • C、f(x)=g(x)
    • D、g(x)=f(g(x))

    正确答案:C

  • 第10题:

    在数域K中多项式f(x)与g(x)若有f=g,则f(x)=g(x)。


    正确答案:正确

  • 第11题:

    单选题
    设f(x)在x=0处满足f′(0)=f″(0)=…=f(n)(0),f(n+1)(0)>0,则(  )。
    A

    当n为偶数时,x=0是f(x)的极大值点

    B

    当n为偶数时,x=0是f(x)的极小值点

    C

    当n为奇数时,x=0是f(x)的极大值点

    D

    当n为奇数时,x=0是f(x)的极小值点


    正确答案: C
    解析:
    此题可用举例法判断。当n=1时(即n为奇数),f′(0)=0,f″(0)>0。由f″(0)>0知f′(x)在x=0处单调增加。又f′(0)=0,x<0时f′(x)<0;x>0时f′(x)>0。因此f(x)在x=0点处取得极小值。
    当n=2时(即n为偶数),f′(0)=f″(0)=0,f‴(0)>0。由f‴(0)>0知,f″(x)在x=0处单调增加。因f″(0)=0,故f′(x)在x=0附近先减小后增加。f′(0)=0,故f(x)在x=0点处单调。因此x=0既不是f(x)的极大值也不是它的极小值。综上所述D项正确。

  • 第12题:

    判断题
    在数域K中多项式f(x)与g(x)若有f=g,则f(x)=g(x)。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第13题:

    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。

    A. [f(x)/g(x)]>[f(a)/g(b)]
    B. [f(x)/g(x)]>[f(b)/g(b)]
    C. f(x)g(x)>f(a)g(a)
    D. f(x)g(x)>f(b)g(b)

    答案:C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

  • 第14题:

    若有则当x→0时,f(x)是:
    (A)有极限的函数
    (B)有界函数
    (C)无穷小量
    (D)比(x-a)高阶的无穷小


    答案:D
    解析:
    ①若就称β是比α高阶的无穷小,记作β=σ(α),并称α是比β低阶的无穷小
    ②若就称β是与α高阶的无穷小
    就称β是与α等价的无穷小,记作α~β,关于等价无穷小,有以下性质:
    存在,则

    当x→0 时,有以下常用的等价无穷小:

  • 第15题:

    设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上



    A.A当f'(x)≥0时,f(x)≥g(x)
    B.当f'(x)≥0时,f(x)≤g(x)
    C.当f"(x)≥0时,f(x)≥g(x)
    D.当f"(x)≥0时,f(x)≤g(x)

    答案:D
    解析:
    由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1-x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1-x)+f(1)x的下方,即f(x)≤g(x)故应选(D).
    (方法二)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,
    则 F'(x)=f'(x)+f(0)-f(1),F"(x)=f"(x).当f"(x)≥0时,F"(x)≥0,则曲线y=F(x)在区间[0,1]上是凹的.又F(0)=F(1)=0,从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
    (方法三)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,

    则 F(x)=f(x)[(1-x)+x]-f(0)(1-x)-f(1)x

    =(1-x)[f(x)-f(0)]-x[f(1)-f(x)]
       =x(1-x)f'(ξ)-x(1-x)f'(η) (ξ∈(0,x),η∈(x,1))
       =x(1-x)[f'(ξ)-f'(η)]
      当f"(x)≥0时,f'(x)单调增,f'(ξ)≤f'(η),从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).

  • 第16题:

    设f(x)是连续函数,F(x)是f(x)的原函数,则()。
    A.当f(x)是奇函数时,F(x)必是偶函数
    B.当f(x)是偶函数时,F(x)必是奇函数
    C.当f(x)是周期函数时,F(x)必是周期函数
    D.当f(x)是单调增函数时,F(x)必是单调增函数


    答案:B
    解析:

  • 第17题:


    A.当n为偶数时,x=0是f(x)的极大值点
    B.当n为奇数时,x=0是f(x)的极小值点
    C.当n为奇数时,x=0是f(x)的极大值点
    D.当n为偶数时,x=0是f(x)的极小值点

    答案:D
    解析:

  • 第18题:

    如果反射波的频谱S(f)和干扰波的频谱N(f)是()的即当S(f)≠0时,则N(f)=0;当S(f)=0时则(),这时可采用频率滤波的方法.要求滤波器的频率响应H(f),在()的频谱分布区为1,而在()的分布区为零.即:X(t)→X(f)=S(f)+N(f),X^(f)=X(f)•H(f)=S(f).


    正确答案:分离;N(f)≠0;反射波;干扰波.

  • 第19题:

    函数f(x)在x0附近有定义(在x0可以没有意义)若有一个常数C使得当x趋近于x0但不等于x0时有|f(x)-c|可以任意小,称C是当x趋近于x0时f(x)的什么?()

    • A、微分值
    • B、最大值
    • C、极限
    • D、最小值

    正确答案:C

  • 第20题:

    设f(x)=2x-3x=2,则当x→0时()。

    • A、f(x)与x是等价无穷小
    • B、f(x)与x同阶但非等价无穷小
    • C、f(x)是比x高阶的无穷小
    • D、f(x)是比x低阶无穷小

    正确答案:B

  • 第21题:

    若p/q是f(x)的根,其中(p,q)=1,则f(x)=(px-q)g(x),当x=1时,f(1)/(p-q)是什么?()

    • A、复数
    • B、无理数
    • C、小数
    • D、整数

    正确答案:D

  • 第22题:

    单选题
    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]
    A

    f(x)/g(x)>f(a)/g(b)

    B

    f(x)/g(x)>f(b)/g(b)

    C

    f(x)g(x)>f(a)g(a)

    D

    f(x)g(x)>f(b)g(b)


    正确答案: C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

  • 第23题:

    单选题
    设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()
    A

    f(x)=g(f(x))

    B

    g(x)=f(f(x))

    C

    f(x)=g(x)

    D

    g(x)=f(g(x))


    正确答案: C
    解析: 暂无解析

  • 第24题:

    单选题
    函数f(x)在x0附近有定义(在x0可以没有意义)若有一个常数C使得当x趋近于x0但不等于x0时有|f(x)-c|可以任意小,称C是当x趋近于x0时f(x)的什么?()
    A

    微分值

    B

    最大值

    C

    极限

    D

    最小值


    正确答案: D
    解析: 暂无解析