将四个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于盒子的编号,则不同的放球方法有( )种。
A.9
B.10
C.12
D.18
第1题:
将四个颜色互不相同的球全部放人编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于盒子的编号,则不同的放球方法有( )种。 A.9 B.10 C.12 D.18
第2题:
一个袋子里装了各种颜色的小球,其中红球个数占1/4,后来又向袋子中放入10个红球,这时红球个数占总数的2/3,问原来袋子中共有多少球?
设原来有总数有X个小球,所以(X/4+10)/(X+10)=2/3
解方程得X=8
第3题:
A、B、C、D四个盒子中依次放有6、4、5、3个球。第l个小朋友找到放球最少的盒子,从其他盒子中各取一个球放入这个盒子;然后第2个小朋友找到放球最少的盒子,从其他盒子中各取一个球放入这个盒子……如此进行下去。当34位小朋友放完后,问B盒子中放有多少个球?( )
A.4
B.6
C.8
D.11
第4题:
现在将编号为1、2、3、4、5、6的6个球分别放入编号为1、2、3、4、5、6的6个盒子里,每个盒子放1个球。请问,恰好有2个盒子编号与球编号一样的投放方法有多少种?
A.15
B.24
C.135
D.270
第5题:
第6题:
第7题:
第8题:
4个不同的小球放入4个不同的盒子里,每个盒子有一个球,有()种方法。
第9题:
将7个乒乓球放入3个同样的盒子里,允许有的盒子空着不放,共有()种不同的放法。
第10题:
1000个红球,1000个白球,放入两个盒子中,每个盒子放1000个球,有()种放法。
第11题:
4
10
12
24
第12题:
340
286
446
364
第13题:
把6个标有不同标号的小球放入三个大小不同的盒子里。大盒子放3个球,中号盒子放2个,小盒子放1个。问共有多少种放法?( )A.50 B.60 C.70 D.40
本题正确答案为B。本题是一个乘法原理与组合综合运用的问题。首先,把球放入盒子需分三步走,这需用乘法原理。其次,放入盒中的球不计顺序,这是一个组合问题,因此,综合以上两点可知,共有C36×C23×C11=20×3×1=60种放法
第14题:
盒子中装了大球和小球,颜色分别有红色和白色。大球中红球占80%,小球中红球占602,在整个盒子里红球占62%,红色大球与白色小球数目之比是( )。
A.1:9
B.9:1
C.2:9
D.9:2
第15题:
丁丁和宁宁各有一只盒子,里面都放着棋子,两只盒子里的棋子一共是270粒。丁丁从自己的盒子里拿出÷的棋子放入宁宁的盒子里后,宁宁盒子里的棋子数恰好增加亡。原来宁宁有棋子多少粒?( )
A.180
B.150
C.120
D.145
第16题:
第17题:
第18题:
第19题:
第20题:
两个盒子里都有糖果,一个盒子里的糖果数是奇数,另一个盒子里的糖果数是偶数。如果右边盒子里的糖果数乘3,左边盒子里的糖果数乘2,然后把两个数加起来,和是49。猜一猜哪个盒子里的糖果数是奇数()
第21题:
将10个小球随机放入甲、乙、丙三个盒子中,且每个盒子中小球的个数均为质数,接着在甲、乙、丙三个盒子中分别放入等于其盒内球数的2、3、4倍的小球。两次共放入了39个小球。最终甲盒中的小球比乙盒()
第22题:
左边
右边
左右边都是
无法确定
第23题:
多2个
少11个
少2个
少20个