:现有边长1 米的一个木质正方体,已知将其放入水里,将有0 . 6 米浸入水中.如果将其分割成边长0. 25 米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表内积总量为:
A .3. 4 平方米 B .9. 6 平方米 C .13. 6平方米 D .16 平方米
第1题:
现有边长为1米的一个本质正方体,将其放入水里,有0.6米浸入水中。如果将其分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为( )。
A.3.4平方米
B.9.6平方米
C.13.6平方米
D.16平方米
第2题:
【题目描述】
47. 现有边长1 米的一个木质正方体,已知将其放入水里,将有0 . 6 米浸入水中.如果将其分割成边长0. 25 米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表内积总量为: A .3. 4 平方米 B .9. 6 平方米 C .13. 6平方米 D .16 平方米
正确答案:C |
这个题目虽然考察的是数字运算,但涉及了一些物理知识。我们应该知道,分割后的小立方体也有3/5的体积在水面下。
我们习惯的思维是:大立方体可以被分割为64个小立方体。每个小立方体和水接触的表面积是:0.25×0.25+0.25×.06×0.25×4
64个小立方体和水接触的表面积是(0.25×0.25+0.25×0.6×0.25×4)×64=13.6
非常规思维方法: 大立方体和水接触的表面积是:1×1+1×0.6×1×4=3.4
分割后小立方体和水接触的 表面积应该被3.4除尽。所有答案中,AC符合。而A 是大立方体和水接触的表面积。我们知道,分割后小立方体和水接触的的表面积应该是大于3.4的。因此选择答案C。我们应该把握和熟练运用整除,除尽这些技巧。只有平时多多训练,在考试中才会轻松。
第3题:
第4题:
现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中。如果将分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为( )。
A.3.4平方米
B.9.6平方米
C.13.6平方米
D.16平方米
第5题:
:现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中。如果将分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为( )。
A.3.4平方米
B.9.6平方米
C.13.6平方米
D.16平方米
本题属于面积问题。因为把边长为1米的正方体木块置于水中有0.6米浸入水中,所以当将其分割为边长0.25米的正方体木块置于水中时,其浸入水中的高度为3/20米。则可以计算出其中一个分割后的正方体木块与水的接触面积为:(1/4)×(1/4)+4×(1/4)×(3/20)=1/16+3/20,又因为边长1米的正方体可以分割为64个边长为O.25米的正方体,所以题中所求面积为:64×(1/16+3/20)=13.6(平方米)。正确答案为C。