已知某企业的成本函数为C=q2+100,C为总成本,q为产量,试问:(1)若产品市场价格p=40,那么产量为多少才可实现最大利润?(2)当产品市场价格达到多少时,该企业才会获得正的市场利润?

题目
已知某企业的成本函数为C=q2+100,C为总成本,q为产量,试问:(1)若产品市场价格p=40,那么产量为多少才可实现最大利润?(2)当产品市场价格达到多少时,该企业才会获得正的市场利润?


相似考题
更多“已知某企业的成本函数为C=q2+100,C为总成本,q为产量,试问:(1)若产品市场价格p=40,那么产量为多少才可实现最大利润?(2)当产品市场价格达到多少时,该企业才会获得正的市场利润? ”相关问题
  • 第1题:

    一个完全竞争行业中的一个典型厂商,其长期总成本函数为LTC =q3- 60q2+1500q,其中成本的单位为元,q为月产量. (1)推导出其长期平均成本和长期边际成本函数。 (2)若产品市场价格为975元,为实现利润最大化,厂商的产量将是多少? (3)厂商在(2)中的均衡是否与行业均衡并存? (4)若市场的需求曲线为P=9600 -Q,在长期均衡中,该行业将有多少厂商?


    答案:
    解析:

  • 第2题:

    .已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求: (1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润; (2)当市场价格下降为多少时,厂商必须停产; (3)厂商的短期供给函数。


    5以下

  • 第3题:

    【计算题】某企业的平均可变成本为AVC=Q2-30Q+300,Q为产量,当市场价格为300时,该企业利润为0,试求该企业的固定成本(TFC)函数?


    将平均变动成本函数对产出求导令一阶导数等于0就可以得到平均变动成本最小时的产量。 此时的平均变动成本为 AVC=12.69 由平均变动成本函数可以得到总变动成本函数: TVC=30.42Q-0.079Q 2 +0.000088Q 3 由总变动成本函数可以求得边际成本函数: MC=30.42-0.158Q+0.000264Q 2 当产出为700时 AVC 700 =18.24 MC 700 =49.18 将平均变动成本函数对产出求导,令一阶导数等于0,就可以得到平均变动成本最小时的产量。此时的平均变动成本为AVC=12.69由平均变动成本函数可以得到总变动成本函数:TVC=30.42Q-0.079Q2+0.000088Q3由总变动成本函数可以求得边际成本函数:MC=30.42-0.158Q+0.000264Q2当产出为700时AVC700=18.24MC700=49.18

  • 第4题:

    某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?
    (1)平均产量AP=TP/L= -0.1 L2 +6L+12 边际产量MP=(TP)’= - 0.3 L2+12L+12
    (2)企业应在平均产量递减,边际产量为正的生产阶段组织生产,因此雇用工人的数量也应在此范围<0,MP>0内。 对APL求导,得= - 0.2 L +6=0。 即L=30 
    当L=30时,APL取得最大值,L>30,APL开始递减。 令MPL= - 0.3L2+12L+12=0,得L=40.98
    所以,企业雇用工人的合理范围为30≤L≤41
    (3)利润π=PQ-WL=40(- 0.1 L3 +6L2 +12L)-480L = - 4 L3 +240L2 +480L-480L
    Π’=- 12L2+480L,当Π’=0时, L=0 (舍去) 或L=40.
    当L=40时, Π” <0,所以L=40,利润π最大。
    此时,产量Q= -0.1×403+6 × 402 +12 × 40 =3680

  • 第5题:

    【计算题】已知某完全竞争行业中的单个厂商的短期成本函数为:STC=0.1Q3-2Q2+15Q+10,试求: (1)当市场上产品价格为P=55时,厂商的短期均衡产量和利润。 (2)当市场价格下降为多少时,厂商必须停产。 (3)厂商的短期供给函数。


    5以下