参考答案和解析
正确答案: P1=P2
解析: 暂无解析
更多“从0,1,2------9这十个数中不放回随机取4个数能排成4位偶数的概率P1与从中不放回随机取5个数能排成一个5位偶数”相关问题
  • 第1题:

    从l、2、3、4、5、6、7、8、9、10这l0个数字中, 任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积?( )

    A 1 3

    B.1 4

    C.18

    D.20


    正确答案:A
    15.A【解析】从整体考虑, 分两组和不变:1+2+3+4+5+6+7+8+9+10=55。从极端考虑分成最小和最大的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55, 最接近的两组为27+28,所以共有27—15+1=13个不同的积。

  • 第2题:

    从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为

    (A)300 (B)216 (C) 180 (D)162


    正确答案:C

  • 第3题:

    从0到9这10个数中任取一个数并且记下它的值,放回,再取一个数也记下它的值。当 两个值的和为8时,出现5的概率是多少?


    答案:C
    解析:
    两个数值的和为8,则可能的情况有0+8、1+7、2+6、3+5、4+4、5+3、6+2、7+1、8+0这9种 情况,其中出现5的有2种情况。因此所求概率为2/9

  • 第4题:

    袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,求以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数。①求②求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第5题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第6题:

    从1,2,…,9这九个数中,随机抽取3个不同的数,这3个数的和为偶数的取法有( )种

    A.36
    B.44
    C.60
    D.72
    E.90

    答案:B
    解析:

  • 第7题:

    袋中有l个红色球,2个黑色球与三个白球,现有放回地从袋中取两次,每次取一球,以 X,Y,Z分别表示丽次取球所取得的红球、黑球与白球的个数。
    (1)求P{X=1|Z=0};
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第8题:

    从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于。

    A.0.3024
    B.0.0302
    C.0.2561
    D.0.0285

    答案:A
    解析:

  • 第9题:

    从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于()


    正确答案:0.3024

  • 第10题:

    从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为()


    正确答案:0.0486

  • 第11题:

    问答题
    从0,1,2------9这十个数中不放回随机取4个数能排成4位偶数的概率P1与从中不放回随机取5个数能排成一个5位偶数的概率P2哪个大?

    正确答案: P1=P2
    解析: 暂无解析

  • 第12题:

    单选题
    从1,2,…,9共九个数字中任取一个数字,取出数字为偶数的概率为(  ).
    A

    0      

    B

    1      

    C

    5/9     

    D

    4/9


    正确答案: B
    解析: 9个数。偶数的个数是4个

  • 第13题:

    从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不l司的乘积?( )

    A.13

    B.14

    C.18

    D.20


    正确答案:A
    从整体考虑分两组,和不变:1+2+3+4+5+6+7+8+9+10=55。从极端考虑分成最小和最大的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55,最接近的两组为27+28,所以共有27-15+1=13个不同的积。

  • 第14题:

    从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件概率等于()。

    A:0.3024
    B:0.0302
    C:0.2561
    D:0.0285

    答案:A
    解析:

  • 第15题:

    从1,2,3,……,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于()。

    A:0.3024
    B:0.0302
    C:0.2561
    D:0.0285

    答案:A
    解析:
    该事件的概率=10*9*8*7*6/105=0.3024。

  • 第16题:

    从1、2、3、4、5中随机抽取3个数,问这3个数之和至少能被其中一个数整除的概率是多少?

    A. 10%
    B. 30%
    C. 60%
    D. 90%

    答案:D
    解析:
    三个数中只要含有1就能满足,共C4,2=6种,三个数中含有2的话,三个数的和必须是偶数,共C3,2-1=2种,不含1和2只有3、4、5能被3整除,因此共有9种满足的情况,总数为c5,3=10,概率为9/10=90%。

  • 第17题:

    从1.2.3.4.5.6.7.8.9这九个数字中,随机取出一个数字,这个数字是奇数的概率是()


    答案:B
    解析:

  • 第18题:

    从1、2、3、4、5这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为()



    答案:D
    解析:

  • 第19题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第20题:

    在区间(0,1)内随机地取两个数,则所取两数之和不超过5.0概率为()。


    正确答案:1/8

  • 第21题:

    偶校验码为0时,分组中"1"的个数为()。

    • A、偶数
    • B、奇数
    • C、随机数
    • D、奇偶交替

    正确答案:A

  • 第22题:

    问答题
    35.从1,2.3,4,5中任取3个数字,则这3个数字中不含1的概率为

    正确答案:
    解析:

  • 第23题:

    单选题
    30.将0,1,2,…,9等10个数字中随机地、有放回地接连抽取4个数字,则“8”至少出现一次的概率为  
    A

    0.1

    B

    0.3439

    C

    0.4

    D

    0.6561


    正确答案: A
    解析:

  • 第24题:

    问答题
    36.从分别标有1.2,…,9号码的9件产品中随机取3件,每次取1件,取后放回,则取得的3件产品的标号都是偶数的概率是

    正确答案:
    解析: