单选题微分方程y″-4y′+5y=0的通解为(  )。A ex(C1cos2x+C2sin2x)B C1e-x+C2e5xC e2x(C1cosx+C2sinx)D C1ex+Ce-5x

题目
单选题
微分方程y″-4y′+5y=0的通解为(  )。
A

ex(C1cos2x+C2sin2x)

B

C1ex+C2e5x

C

e2x(C1cosx+C2sinx)

D

C1ex+Ce5x


相似考题
更多“单选题微分方程y″-4y′+5y=0的通解为(  )。A ex(C1cos2x+C2sin2x)B C1e-x+C2e5xC e2x(C1cosx+C2sinx)D C1ex+Ce-5x”相关问题
  • 第1题:

    在下列微分方程中,以函数y=C1e^-x+C2e^4x(C1,C2为任意常数)为通解的微分方程是(  )。

    A. y″+3y′-4y=0
    B. y″-3y′-4y=0
    C. y″+3y′+4y=0
    D. y″+y′-4y=0

    答案:B
    解析:

    由题意知,二阶常系数齐次线性微分方程的特征方程的两个根为-1和4,只有B项满足。
    【总结】求二阶常系数齐次线性微分方程y″+py′+qy=0的通解的步骤:
    ①写出微分方程的特征方程r2+pr+q=0;
    ②求出特征方程的两个根r1,r2;
    ③根据r1,r2的不同情形,写出微分方程的通解:
    a.当r1≠r2,



    b.当r1=r2,



    c.一对共轭复根r1,2=α±βi,y=eαx(C1cosβx+C2sinβx)。

  • 第2题:

    微分方程y′+y=0的通解为( ).《》( )


    答案:D
    解析:

  • 第3题:

    微分方程y'+x=0的通解为


    答案:D
    解析:
    [解析]所给方程为可分离变量方程.

  • 第4题:

    微分方程y′′+6y′+13y=0的通解为.


    答案:
    解析:
    【答案】
    【考情点拨】本题考查了二阶线性齐次微分方程的通解的知识点.
    【应试指导】微分方程y''+6y'+13y=0的特征方程

  • 第5题:

    微分方程y′-2xy=0的通解为y=_____.


    答案:
    解析:
    所给方程为可分离变量方程.

  • 第6题:

    下列结论不正确的是()。

    • A、y"+y=ex的一个特解的待定形式为y*=Aex
    • B、y"+y=sinx的一个特解的待定形式为y*=x(c1cosx+c2sinx)
    • C、y"-4y’+4y=e2x的一个特解的待定形式为y*=Axe2x
    • D、D.y"-4y’+4y=x2的一个特解的待定形式为y*-(Ax2+Bx+x

    正确答案:D

  • 第7题:

    填空题
    微分方程y″+[2/(1-y)](y′)2=0的通解为____。

    正确答案: y=1-1/(c1x+c2)
    解析:
    原微分方程为y″+[2/(1-y)](y′)2=0,令y′=p,则y″=pdp/dy,原方程变形为pdp/dy+2p2/(1-y)=0,即p[dp/dy+2p/(1-y)]=0。如果p=0,则y=c,这不是此方程的通解。如果p≠0,则有dp/dy=2p/(y-1),分离变量并积分得ln|p|=2ln|y-1|+ln|c|,p=c1(y-1)2 即 dy/dx=c1(y-1)2故∫dy/(y-1)2=∫c1dx⇒-1/(y-1)=c1x+c2⇒y=1-1/(c1x+c2)。

  • 第8题:

    填空题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=____。

    正确答案: -xex+x+2
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第9题:

    单选题
    在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是(  )。
    A

    y‴+y″-4y′-4y=0

    B

    y‴+y″+4y′+4y=0

    C

    y‴-y″-4y′+4y=0

    D

    y‴-y″+4y′-4y=0


    正确答案: D
    解析:
    根据题设中通解的形式可知,所求齐次方程中对应的特征根为r1=1,r23=±2i。故特征方程为(r-1)(r-2i)(r+2i)=0即r3-r2+4r-4=0,则所求微分方程为y‴-y″+4y′-4y=0。

  • 第10题:

    填空题
    y″-4y=e2x的通解为____。

    正确答案: y=C1e-2x+(C2+x/4)e2x(其中C1,C2为任意常数)
    解析:
    原方程为y″-4y=e2x,其齐次方程对应的特征方程为r2-4=0,解得r12=±2,故其对应的齐次方程y″-4y=0的通解为y1=C1e2x+C2e2x。因为非齐次方程右端的非齐次项为e2x,2为特征方程的单根,故原方程特解可设为y*=Axe2x,代入原方程得A=1/4,故原方程的通解为y=y1+y*=C1e2x+C2e2x+xe2x/4。

  • 第11题:

    单选题
    微分方程y″-4y′+5y=0的通解为(  )。
    A

    ex(C1cos2x+C2sin2x)

    B

    C1ex+C2e5x

    C

    e2x(C1cosx+C2sinx)

    D

    C1ex+Ce5x


    正确答案: B
    解析:
    原微分方程为齐次方程,其对应的特征方程为r2-4r+5=0,解得r=2±i。故方程通解为y=e2x(C1cosx+C2sinx)。

  • 第12题:

    单选题
    微分方程y″-2y′+2y=ex的通解为(  )。
    A

    y=ex(c1cosx-c2sinx)+ex

    B

    y=ex(c1cos2x-c2sin2x)+e

    C

    y=ex(c1cosx+c2sinx)+ex

    D

    y=ex(c1cos2x+c2sin2x)+ex


    正确答案: B
    解析:
    原微分方程为y″-2y′+2y=ex,其对应的齐次方程为y″-2y′+2y=0,该齐次方程的特征方程为r2-2r+2=0,解得r12=1±i。故原方程对应的齐次方程的通解为y(_)=ex(c1cosx+c2sinx)。设y*=Aex为原方程的特解,将其代入原方程可解得A=1。故原方程的通解为y=ex(c1cosx+c2sinx)+ex

  • 第13题:

    微分方程xy'-ylny=0的通解为( )。

    A、y=cex
    B、y=clnx
    C、y=lncx
    D、y=ecx

    答案:D
    解析:
    方程是可分离变量的方程,可化为,两边积分得lnlny=lnx+lnc,即其通为y=ecx

  • 第14题:

    微分方程y''-4y=4的通解是( )(C1,C2为任意常数)。


    答案:B
    解析:
    提示:显然C不是通解;对应齐次方程的通解为C1e2x+C2e-2x ,y=-1是一个特解,故应选B。

  • 第15题:

    微分方程y′-y=0的通解为().

    A.y=ex+C
    B.y=e-x+C
    C.y=Cex
    D.y=Ce-x

    答案:C
    解析:
    所给方程为可分离变量方程.

  • 第16题:

    微分方程y''+y=0的通解是 .


    答案:
    解析:
    【考情点拨】本题考查了二阶线性微分方程的通解知识点.【应试指导】微分方程y''+y=0的特征方程是r2+1=0.

  • 第17题:

    二阶常系数齐次微分方程y″-4y′+4y=0的通解为_____.


    答案:
    解析:

  • 第18题:

    单选题
    以y1=ex,y2=e2xcosx为特解的最低阶数的常系数线性齐次方程为(  )。
    A

    y‴-5y″-9y′-5y=0

    B

    y‴-5y″-5y′-5y=0

    C

    y‴-5y″+9y′-5y=0

    D

    y‴-5y″+5y′-5y=0


    正确答案: A
    解析:
    由题意可知,r1=1,r23=2±i是其特征方程的根,则最低的齐次方程的阶数为3,则其特征方程为(r-1)(r-2-i)(r-2+i)=0,即(r-1)(r2-4r+5)=0,r3-5r2+9r-5=0。故满足题意的齐次方程为y‴-5y″+9y′-5y=0。

  • 第19题:

    单选题
    以y1=ex,y2=e2xcosx为特解的最低阶数的常系数线性齐次方程为(  )。
    A

    y‴+5y″+9y′+5y=0

    B

    y‴+5y″+9y′-5y=0

    C

    y‴-5y″+9y′+5y=0

    D

    y‴-5y″+9y′-5y=0


    正确答案: C
    解析:
    由题意可知,r1=1,r2,3=2±i是其特征方程的根,则最低的齐次方程的阶数为3,则其特征方程为(r-1)(r-2-i)(r-2+i)=0,即(r-1)(r2-4r+5)=0,r3-5r2+9r-5=0。故满足题意的齐次方程为y‴-5y″+9y′-5y=0。

  • 第20题:

    填空题
    微分方程y″-2y′+2y=ex的通解为____。

    正确答案: y=ex(c1cosx+c2sinx)+ex
    解析:
    原微分方程为y″-2y′+2y=ex,其对应的齐次方程为y″-2y′+2y=0,该齐次方程的特征方程为r2-2r+2=0,解得r12=1±i。故原方程对应的齐次方程的通解为y(_)=ex(c1cosx+c2sinx)。设y*=Aex为原方程的特解,将其代入原方程可解得A=1。故原方程的通解为y=ex(c1cosx+c2sinx)+ex

  • 第21题:

    单选题
    下列结论不正确的是()。
    A

    y+y=ex的一个特解的待定形式为y*=Aex

    B

    y+y=sinx的一个特解的待定形式为y*=x(c1cosx+c2sinx)

    C

    y-4y’+4y=e2x的一个特解的待定形式为y*=Axe2x

    D

    D.y-4y’+4y=x2的一个特解的待定形式为y*-(Ax2+Bx+x


    正确答案: A
    解析: y"+y=0的特征根为λ=±i,故(A)、(B)的特解的形式均正确,y"-4y’+4y=0的特征方程为λ2-4λ+4=0,(λ-2)2=0,有一个二重根λ1,2=2,故(C)的特解的形式正确,而(D)不正确。

  • 第22题:

    单选题
    微分方程(ex+y+ex)dx+(ex+y-ey)dy=0的通解是(  )。
    A

    (1-ex)(1+ey)=C

    B

    (1+ex)(1-ey)=C

    C

    ey=C(1-ex)-1

    D

    ey=1-C(1+ex


    正确答案: B
    解析:
    ∫(exy+ex)dx=exy+ex+f(y),∫(exy-ey)dy=exy-ey+g(x),故f(y)=-ey,g(x)=ex。(exy+ex)dx+(exy-ey)dy=d(exy+ex-ey+C)。

  • 第23题:

    单选题
    微分方程xdy-ydx=y2eydy的通解为(  )。
    A

    y=x(ex+C)

    B

    x=y(ey+C)

    C

    y=x(C-ex

    D

    x=y(C-ey


    正确答案: C
    解析:
    原微分方程xdy-ydx=y2eydy,变形可得(xdy-ydx)/y2=eydy,即-d(x/y)=d(ey),积分得-x/y=ey-C。即x=y(C-ey)就是微分方程的通解。

  • 第24题:

    单选题
    微分方程y″-2y′+2y=ex的通解为(  )。
    A

    y=ex(c1cosx+c2sinx)+ex

    B

    y=ex(c1cosx+c2sinx)-ex

    C

    y=ex(c1cosx-c2sinx)+ex

    D

    y=ex(c1cosx-c2sinx)-ex


    正确答案: D
    解析:
    原微分方程为y″-2y′+2y=ex,其对应的齐次方程为y″-2y′+2y=0,该齐次方程的特征方程为r2-2r+2=0,解得r1,2=1±i。故原方程对应的齐次方程的通解为y(_)=ex(c1cosx+c2sinx)。设y*=Aex为原方程的特解,将其代入原方程可解得A=1。故原方程的通解为y=ex(c1cosx+c2sinx)+ex