单选题设方程x+z=yf(x2-z2)(其中f可微)确定了z=z(x,y),则z∂z/∂x+y∂z/∂y=(  )。A xB yC zD yf(x2-y2)

题目
单选题
设方程x+z=yf(x2-z2)(其中f可微)确定了z=z(x,y),则z∂z/∂x+y∂z/∂y=(  )。
A

x

B

y

C

z

D

yf(x2-y2


相似考题
更多“设方程x+z=yf(x2-z2)(其中f可微)确定了z=z(x,y),则z∂z/∂x+y∂z/∂y=(  )。”相关问题
  • 第1题:

    下面程序执行的结果是( )。 CLEAR X=5 Y=6 Z=7 IF X>Y IF Z>8 X=X+Y ELSE X=X+Z ENDIF ENDIF ?X

    A.5

    B.11

    C.12

    D.13


    正确答案:A
    解析:在IF-ENDIF语句中,当表达式为真时,则执行IF语句之后、ELSE或ENDIF语句(以先出现的语句为准)之前的所有命令;当表达式为假时,则执行ELSE语句之后、ENDIF语句之前的所有命令。而且ELSE应该与距离它最近的不带ELSE的IF配对。本题第一个IF没有相应的ELSE配对,且表达式为假,直接输出X的值。

  • 第2题:

    设z=z(x,y)是由方程x2+y2+z2=ez所确定的隐函数,求dz.


    答案:
    解析:

  • 第3题:

    若函数z=z(x,y)由方程确定,则=_________.


    答案:1、-dx.
    解析:

  • 第4题:

    判断下列逻辑运算说法是否正确。 (1)若X+Y=X+Z,则Y=Z;() (2)若XY=XZ,则Y=Z;() (3)若X⊕Y=X⊕Z,则Y=Z;()


    正确答案:错;错;对

  • 第5题:

    单选题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+(∂z/∂y)=(  )。
    A

    2

    B

    1

    C

    e

    D

    0


    正确答案: A
    解析:
    构造函数F(x,y,z)=z-e2x3z-2y。则∂z/∂x=-Fx′/Fz′=2e2x3z/(1+3e2x3z),∂z/∂y=-Fy′/Fz′=2/(1+3e2x3z),故3∂z/∂x+(∂z/∂y)=2。

  • 第6题:

    填空题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+∂z/∂y=____。

    正确答案: 2
    解析:
    方程两边同时对x求偏导,则∂z/∂x=e2x3z(2-3∂z/∂x),可得∂z/∂x=2e2x3z/(1+3e2x3z)。同理∂z/∂y=e2x3z(-3∂z/∂y)+2,可得∂z/∂y=2/(1+3e2x3z),所以3∂z/∂x+∂z/∂y=6e2x3z/(1+3e2x3z)+2/(1+3e2x3z)=2(1+3e2x3z)/(1+3e2x3z)=2。

  • 第7题:

    单选题
    设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=(  )。
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: A
    解析:
    根据偏导数的求解方法可知∂z/∂x=-Fx′/Fz′=-F1′/(―aF1′―bF2′),∂z/∂y=-Fy′/Fz′=-F2′/(―aF1′―bF2′),故a∂z/∂x+(b∂z/∂y)=-(aF1′+bF2′)/(―aF1′―bF2′)=1。

  • 第8题:

    单选题
    设z=φ(x2-y2),其中φ有连续导数,则函数z满足(  )。
    A

    x∂z/∂x+y∂z/∂y=0

    B

    x∂z/∂x-y∂z/∂y=0

    C

    y∂z/∂x+x∂z/∂y=0

    D

    y∂z/∂x-x∂z/∂y=0


    正确答案: D
    解析:
    令u=x2-y2,则z=φ(u),∂z/∂x=φ′(u)·2x=2xφ′(u),∂z/∂y=-2yφ′(u),故y∂z/∂x+x∂z/∂y=0。

  • 第9题:

    单选题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+(∂z/∂y)=(  )。
    A

    0

    B

    1

    C

    2

    D

    4


    正确答案: B
    解析:
    构造函数F(x,y,z)=z-e2x3z-2y。则∂z/∂x=-Fx′/Fz′=2e2x3z/(1+3e2x3z),∂z/∂y=-Fy′/Fz′=2/(1+3e2x3z),故3∂z/∂x+(∂z/∂y)=2。

  • 第10题:

    单选题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=(  )。
    A

    -yf1′/x-xf2′/y

    B

    -yf1′/x+xf2′/y

    C

    2(-yf1′/x+xf2′/y)

    D

    2(-yf1′/x-xf2′/y)


    正确答案: A
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第11题:

    填空题
    设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=____。

    正确答案: 1
    解析:
    根据偏导数的求解方法可知∂z/∂x=-Fx′/Fz′=-F1′/(―aF1′―bF2′),∂z/∂y=-Fy′/Fz′=-F2′/(―aF1′―bF2′),故a∂z/∂x+(b∂z/∂y)=-(aF1′+bF2′)/(―aF1′―bF2′)=1。

  • 第12题:

    填空题
    设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx′(0,1,-1)=____。

    正确答案: 1
    解析:
    构造函数F(x,y,z)=x+y+z+xyz,则有∂z/∂x=-Fx′/Fz′=-(1+yz)/(1+xy),(∂z/∂x)|01,-1=0,又由f(x,y,z)=exyz2 ,得fx′=exyz2+exy·2z·zx′,代入(0,1,-1),得fx′(0,1,-1)=e0×1×(-1)2+e0×1×2×(-1)×0=1。

  • 第13题:


    A. x-y=0 B. y-z=0 C. x+y=0 D. x+z=0


    答案:C
    解析:
    提示:曲线的参数方程为x=x,y=x,z=0,求出在原点处切线的方向向量,作为法平面的法线向量,写出法平面方程。

  • 第14题:

    设函数z=z(x,y)由方程确定,其中F为可微函数,且F'2≠0,则=

    A.Ax
    B.z
    C.-x
    D.-z

    答案:B
    解析:

  • 第15题:

    设Z=Z(x,Y)是由方程x+y3+z+e2=1确定的函数,求dz


    答案:
    解析:
    利用隐函数求偏导数公式,记

  • 第16题:

    单选题
    设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx′(0,1,-1)=(  )。
    A

    e

    B

    2e

    C

    0

    D

    1


    正确答案: B
    解析:
    构造函数F(x,y,z)=x+y+z+xyz,则有∂z/∂x=-Fx′/Fz′=-(1+yz)/(1+xy),(∂z/∂x)|01,-1=0,又由f(x,y,z)=exyz2,得fx′=exyz2+exy·2z·zx′,
    代入(0,1,-1),得fx′(0,1,-1)=e0×1×(-1)2+e0×1×2×(-1)×0=1。

  • 第17题:

    单选题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=(  )。
    A

    -yf1′/x+xf2′/y

    B

    2(-yf1′/x+xf2′/y)

    C

    -yf1′/x+2xf2′/y

    D

    -yf1′/x+f2′/y


    正确答案: A
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第18题:

    单选题
    设方程x2+y2+z2=4z确定可微函数z=z(x,y),则全微分dz等于(  )。[2014年真题]
    A

    (ydx+xdy)/(2-z)

    B

    (xdx+ydy)/(2-z)

    C

    (dx+dy)/(2+z)

    D

    (dx-dy)/(2-z)


    正确答案: C
    解析:
    对等式两边分别同时求导,得:2xdx+2ydy+2zdz=4dz。所以dz=(xdx+ydy)/(2-z)

  • 第19题:

    填空题
    设z=f(xy,x/y)+g(y/x),其中f、g均可微,则∂z/∂x=____。

    正确答案: yf1′+f2′/y-yg′/x2
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,g′为函数g对x的导数。则∂z/∂x=∂f(xy,x/y)/∂x+∂g(y/x)/∂x=f1′y+f2′·(1/y)+g′·(-y/x2)=f1′y+f2′/y-yg′/x2

  • 第20题:

    单选题
    设方程x+z=yf(x2-z2)(其中f可微)确定了z=z(x,y),则z∂z/∂x+y∂z/∂y=(  )。
    A

    x

    B

    y

    C

    z

    D

    yf(x2-y2


    正确答案: C
    解析:
    由x+z=yf(x2-z2),可得∂z/∂x=-(1-y·2xf′)/(1+2yzf′),∂z/∂y=-(-f)/(1+2yzf′),故有(z∂z/∂x)+(y∂z/∂y)=(x-yf+2xyzf′+yf)/(1+2yzf′)=x。

  • 第21题:

    填空题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=____。

    正确答案: 2(-yf1′/x+xf2′/y)
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第22题:

    单选题
    利用变量替换u=x,v=y/x一定可以把方程x∂z/∂x+y∂z/∂y=z化为新方程(  )。
    A

    u∂z/∂u=z

    B

    ∂z/∂v=z

    C

    u∂z/∂v=z

    D

    v∂z/∂u=z


    正确答案: B
    解析:
    由x∂z/∂x+y∂z/∂y=z,得∂z/∂x=(∂z/∂u)·1+(∂z/∂v)(-y/x2),∂z/∂y=(1/x)(∂z/∂v)。
    故x∂z/∂x+y∂z/∂y=x∂z/∂u-(y/x)(∂z/∂v)+(y/x)(∂z/∂v)=x∂z/∂u=z。
    而u=x,故u∂z/∂u=z。

  • 第23题:

    单选题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=(  )。
    A

    2(yf1′/x+xf2′/y)

    B

    2(yf1′/x-xf2′/y)

    C

    2(-yf1′/x+xf2′/y)

    D

    2(-yf1′/x-xf2′/y)


    正确答案: C
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第24题:

    单选题
    由方程f(y/x,z/x)=0确定z=z(x,y)(f可微),则x∂z/∂x+y∂z/∂y=(  )。
    A

    -z

    B

    z

    C

    -y

    D

    y


    正确答案: C
    解析:
    由f(y/x,z/x)=0可得,∂z/∂x=-[f1′·(-y/x2)+f2′·(-z/x2)]/(f2′/x),∂z/∂y=-(f1′/x)/(f2′/x),则x∂z/∂x+y∂z/∂y=-(―yf1′/x―zf2′/x+yf1′/x)/(f2′/x)=z。