更多“如何把握高中数学课程的本质与适度的形式化?”相关问题
  • 第1题:

    强调数据处理能力是高中数学课程的一个变化,有人说统计的概念不难掌握,请谈谈在
    教学中应如何看待统计概念的定义。


    答案:
    解析:
    高中统计的学习,本质上是统计活动的学习,而不是概念和公式的学习。统计内容的教学不应该单纯地讲授概念的定义,图表的制作,数字特征的计算,机械地套用公式。而应该从提取信息的角度比较各种方法的优劣,了解它们的适用范围。让学生通过对实际问题的解决来理解统计的思想,而不是死背公式和定义。
    (1)关注三种抽样方法的差别和不同的实用范围;
    (2)应侧重于了解统计图表能告诉我们何种信息和理解不同统计图表的特点;
    (3)让学生了解数据的数字特征的作用和意义。

  • 第2题:

    《普通高中数学课程标准(实验)》将“( )、数学建模、数学文化”作为贯穿整个高中数学课程的重要学习活动,渗透或安排在每个模块或专题中,正是与创新能力培养的一个呼应,强调如何引导学生去发现问题、提出问题。

    A.数学探究
    B.数学应用
    C.数学思想
    D.数学概念

    答案:A
    解析:

  • 第3题:

    《普通高中数学课程标准(实验)》将“( )、数学建模、数学文化”作为贯穿整个高中数学课程的重要学习活动,渗透或安排在每个模块或专题中,正是与创新能力培养的一个呼应,强调如何引导学生去发现问题、提出问题。

    A、数学探究
    B、数学应用
    C、数学思想
    D、数学概念

    答案:A
    解析:

  • 第4题:

    下列关于高中数学课程的变化内容,说法不正确的是( )

    A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象
    B.高中数学课程中,概率的学习重点是如何计数
    C.算法是培养逻辑推理能力的非常好的载体
    D.集合论是一个重要的数学分支

    答案:C
    解析:
    高中数学课程中向量既是几何的研究对象,也是代数的研究对象,向量是沟通几何与代数的一座天然桥梁;算法是培养逻辑推理能力的非常好的载体,在大学和中学数学教育中都发挥着重要的作用;集合论是一个重要的数学分支,教师要准确把握高中数学课程中集合这一内容的定位;在概率课中,学习的重点是如何理解随机现象而不是如何计数。

  • 第5题:

    下列关于高中数学基础性的说法不正确的是()。

    • A、高中数学课程为学生进一步学习提供了必要的数学准备
    • B、高中数学课程为不同学生提供相同的基础
    • C、高中数学课程体现时代性、基础性和选择性
    • D、高中数学课程要以学生的发展为本,尊重他们的个性发展

    正确答案:B

  • 第6题:

    下列关于高中数学课程结构的说法不正确的是()。

    • A、高中数学课程可分为必修与选修两类
    • B、高中数学选修课程包括4个系列的课程
    • C、高中数学必修课程包括5个模块
    • D、高中课程的组合具有固定性,不能发生改变

    正确答案:D

  • 第7题:

    举例说明在高中数学课程中,如何利用整体性质讨论方程的近似解。


    正确答案: 首先举一个利用二分法判断方程根的存在性的实例。
    例如判断方程x2-x-6=0的根的存在性。我们可以考查函数f(x)=x2-x-6,图象为抛物线。易得f(0)=-6<0,f(4)=6>0,f(-4)=14>0。
    由于函数f(x)的图象是连续曲线,因此点B(0,-6)与点C(4,6)之间的那部分曲线必然穿过x轴,即在区间(0,4)内必有一点x1,使f(x1)=0;同样,在区间(-4,0)内也必有一点x2,使f(x2)=0。所以方程x2-x-6=0有两个实根。
    二分法本质上就是用函数的整体性质“函数在闭区间连续,且端点函数值异号”,去寻求函数图象与x轴的交点。除了二分法外,在数学分析中,还有一些用整体性质讨论方程近似解的方法,这些方法都是从整体看待局部。例如切线法,如果一个函数y=f(x)在闲区间有一阶导数,则可用切线法求方程f(x)=0的解。再例如,割线法,如果一个函数y=f(x)在闭区间有二阶导数,则可用割线法求方程y=f(x)的解。在“计算方法”中可以证明:切线法比二分法快,割线法比切线法快。这是因为,割线法比切线法要求函数具有更好的性质,切线法比二分法要求函数具有更好的性质。

  • 第8题:

    何谓适度原则?如何才能有效地把握管理适度?


    正确答案: 所谓适度原则简言之就是在管理中不能走极端,片面化。管理活动中存在许多种相互矛盾的选择。组织在业务活动范围的选择上既不能过宽,也不能过窄;在管理幅度的选择上,既不能过大,也不能过小;在权力的分配上,既不能完全集中,也不能绝对分散,必须在两个极端之间找到最适点,进行适度管理,实现最佳组合。
    管理者的工作效率更多的不是取决于对管理理论知识和方法的掌握,而是取决于对掌握的这些知识和方法的应用能力。适度原则要求管理者进行适情管理和适时管理。适情管理是指管理者应该根据组织内外的环境和能力特点来进行选择;适时管理则要求管理者根据环境和能力的变化来对这种选择进行调整。

  • 第9题:

    单选题
    形式化是数学的基本特征之一,高中数学课程对形式推理的要求是:()
    A

     建立严格的形式体系

    B

     适度形式化

    C

     以公理化形式呈现


    正确答案: C
    解析: 暂无解析

  • 第10题:

    问答题
    简述高中数学课程的基本教学目标。

    正确答案: 高中数学课程的基本目标是:构建共同的基础,提供发展平台。在义务教育阶段之后,为使学生适应现代生活和未来的发展提供更高水平的数学基础,使他们获得更高的数学素养。高中阶段的数学将为学生提供多样的课程,适应个性选择,为学生提供更广泛的发展空间。
    课程设置总目标的中心点是:突出课程的基础性,把中小学数学课程作为各种人才发展的基础准备和基本训练。把中小学数学知识和能力作为一种社会文化、作为现代社会公民必备的科学素质而普及到每一个学生。
    这样的数学课程应是一种大众数学,课程内容的覆盖面、难度、要求等都应该控制在一个恰当的程度。
    课程设置总目标一方面要适应社会发展的要求,另一方面要适应数学科学自身发展的要求。
    解析: 暂无解析

  • 第11题:

    问答题
    举例说明在高中数学课程中,如何利用整体性质讨论方程的近似解。

    正确答案: 首先举一个利用二分法判断方程根的存在性的实例。
    例如判断方程x2-x-6=0的根的存在性。我们可以考查函数f(x)=x2-x-6,图象为抛物线。易得f(0)=-6<0,f(4)=6>0,f(-4)=14>0。
    由于函数f(x)的图象是连续曲线,因此点B(0,-6)与点C(4,6)之间的那部分曲线必然穿过x轴,即在区间(0,4)内必有一点x1,使f(x1)=0;同样,在区间(-4,0)内也必有一点x2,使f(x2)=0。所以方程x2-x-6=0有两个实根。
    二分法本质上就是用函数的整体性质“函数在闭区间连续,且端点函数值异号”,去寻求函数图象与x轴的交点。除了二分法外,在数学分析中,还有一些用整体性质讨论方程近似解的方法,这些方法都是从整体看待局部。例如切线法,如果一个函数y=f(x)在闲区间有一阶导数,则可用切线法求方程f(x)=0的解。再例如,割线法,如果一个函数y=f(x)在闭区间有二阶导数,则可用割线法求方程y=f(x)的解。在“计算方法”中可以证明:切线法比二分法快,割线法比切线法快。这是因为,割线法比切线法要求函数具有更好的性质,切线法比二分法要求函数具有更好的性质。
    解析: 暂无解析

  • 第12题:

    单选题
    下列关于高中数学基础性的说法不正确的是()。
    A

    高中数学课程为学生进一步学习提供了必要的数学准备

    B

    高中数学课程为不同学生提供相同的基础

    C

    高中数学课程体现时代性、基础性和选择性

    D

    高中数学课程要以学生的发展为本,尊重他们的个性发展


    正确答案: C
    解析: 选项A、C、D都体现了高中数学课程的定位,高中数学课程面向全体学生,为不同兴趣和志向、不同发展方向、进入不同高校不同专业学习的学生提供适合他们的数学基础,为不同的学生提供的基础是不同的,所以选项B是错误的。故选B。

  • 第13题:

    下列关于高中数学基础性的说法不正确的是( )

    A.高中数学课程为学生进一步学习提高了必要的数学准备
    B.高中数学为不同学生提供相同的基础
    C.高中数学课程体现时代性、基础性和选择性
    D.高中数学课程要以学生的发展为本,尊重他们的个性发展

    答案:B
    解析:
    本题考查高中数学课程的性质

    选项A、C、D都体现了高中数学课程的定位,高中数学课程面向全体学生,为不同兴趣和志向、不同发展方向、进入不同高校不同专业学习的学生提供适合他们的数学基础,高中数学课程为不同学生提供不同的基础。

  • 第14题:

    简述高中数学课程的地位和作用。


    答案:
    解析:
    本题主要考查对《高中数学新课程标准》的理解。

    高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
    高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。
    高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。

  • 第15题:

    《普通高中数学课程标准(实验)》指出:“学生对基础知识和基本技能的理解与掌握是数学教学的基本要求,也是评价学生学习的基本内容;评价要注重对数学本质的理解和思想方法的把握,避免片面强调机械记忆,模仿以及复杂技巧。”请分别给出评价学生基础知识与基本技能掌握情况的具体建议,并举例说明。


    答案:
    解析:
    本题主要考查对《普通高中数学课程标准(实验)》中有关评价内容的理解与把握。

    熟悉掌握教材中该部分内容,具体答案详见教材。

  • 第16题:

    如何理解高中数学课程的过程性目标?


    正确答案: 把"过程与方法"作为课程目标是本次课程改革最大的变化之一。在以前的《大纲》中,都在不同程度上强调了"过程与方法"的重要性,但是,这次课程改革把过程与方法作为课程目标。这样,"过程与方法"不再是可有可无的东西,而是必须实现的基本目标,我们必须认识到这种变化不仅力度大,而且有非常重要的意义。实际上,在长期的教学活动中,优秀的教师不仅关注学生对知识技能的掌握,而且关注掌握知识技能的过程,包括知识的来龙去脉,结论的背景、产生过程和意义,获取知识的能力和方法等等。在数学知识技能中,蕴涵着一些重要的数学思想和方法。学习的目的,不仅在于掌握数学知识技能和结果,更重要的是经历形成这些数学知识技能的过程,体会其中所蕴涵的数学思想和方法,学会运用这些思想和方法去学习其他的知识,并能从中感悟数学的作用和价值,提高学生学习数学的兴趣,树立学生学好数学的信心。因此,在教学活动中,不仅要关注学生对知识技能的掌握,而且要特别关注掌握知识技能的过程。

  • 第17题:

    高中数学课程中有哪几条主线?


    正确答案:高中数学课程中有六条主线:函数主线、运算主线、几何主线、算法主线、统计概率主线、应用主线。

  • 第18题:

    下列关于高中数学课程的变化内容,说法不正确的是()。

    • A、高中数学课程中的向量既是几何的研究对象,也是代数的研究对象
    • B、高中数学课程中,概率的学习重点是如何计数
    • C、算法是培养逻辑推理能力的非常好的载体
    • D、集合论是一个重要的数学分支

    正确答案:B

  • 第19题:

    非形式化、半形式化、形式化的软件模型有什么本质的差别?


    正确答案: ①非形式化:仅用自然语言描述系统
    ②半形式化:用E-R图,DFD图等图形描述系统
    ③形式化:用数学语言描述系统

  • 第20题:

    问答题
    如何理解高中数学课程的过程性目标?

    正确答案: 把"过程与方法"作为课程目标是本次课程改革最大的变化之一。在以前的《大纲》中,都在不同程度上强调了"过程与方法"的重要性,但是,这次课程改革把过程与方法作为课程目标。这样,"过程与方法"不再是可有可无的东西,而是必须实现的基本目标,我们必须认识到这种变化不仅力度大,而且有非常重要的意义。实际上,在长期的教学活动中,优秀的教师不仅关注学生对知识技能的掌握,而且关注掌握知识技能的过程,包括知识的来龙去脉,结论的背景、产生过程和意义,获取知识的能力和方法等等。在数学知识技能中,蕴涵着一些重要的数学思想和方法。学习的目的,不仅在于掌握数学知识技能和结果,更重要的是经历形成这些数学知识技能的过程,体会其中所蕴涵的数学思想和方法,学会运用这些思想和方法去学习其他的知识,并能从中感悟数学的作用和价值,提高学生学习数学的兴趣,树立学生学好数学的信心。因此,在教学活动中,不仅要关注学生对知识技能的掌握,而且要特别关注掌握知识技能的过程。
    解析: 暂无解析

  • 第21题:

    问答题
    非形式化、半形式化、形式化的软件模型有什么本质的差别?

    正确答案: ①非形式化:仅用自然语言描述系统
    ②半形式化:用E-R图,DFD图等图形描述系统
    ③形式化:用数学语言描述系统
    解析: 暂无解析

  • 第22题:

    问答题
    如何把握高中数学课程的本质与适度的形式化?

    正确答案: 形式化是数学的特征之一,但是中学数学中的形式化受学生认知水平的限制。在高中数学课程中,适度形式化是必要的。例如,对于运算的学习,就要严格按照运算的定义,遵循运算律,过度形式化是不必要的。例如,对于几何、函数等内容,不需要过度形式化。对于几何,不必严格遵循几何的公理系统,而要关注几何直观。对于函数,也不必从集合、关系的角度去展开等。因此,高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展背景、过程和本质,揭示人们探索真理的道路。
    解析: 暂无解析

  • 第23题:

    单选题
    高中数学要强调对数学的本质的认识,否则会将什么淹没在形式化海洋里:()
    A

     数学思维活动

    B

     解题训练活动


    正确答案: A
    解析: 暂无解析