参考答案和解析
正确答案:B
更多“甲、乙两人从4.0米的环形跑道的一点A背向同时出发,8分钟后两人”相关问题
  • 第1题:

    周长为400米的圆形跑道上, 有相距100米的A、B两点, 甲乙两人分别从A、B两点同时相背而跑, 两人相遇后, 乙即转身与甲同向而跑步, 当甲跑到A时, 乙恰好跑到B。如果以后甲、乙跑的速度方向都不变,那么甲追上乙时,甲从出发开始,共跑了( )米。

    A.600

    B.800

    C.900

    D.1000


    正确答案:D
    13.D【解析】乙从相遇点C跑回B点时,甲从C过B到A,他比乙多跑了100米,乙从B到C时, 甲从A到C, 说明A到C比B到C多100米, 跑道周长400米, 所以8到C是100米,A到C是200米,甲跑200米,比乙多100米。甲追上乙要多跑300=400—100(米),所以甲要跑200X 3=600(米),加上开始跑的一圈,甲共跑600+400=1000(米)。

  • 第2题:

    400米环形跑道上,甲乙两人同时从起点同向出发,经过1分钟40秒,甲从后面追上乙,然后甲立马调转头,向相反方向跑去,结果过了25秒两人又见面,问甲跑完一周需要多少时间?( )

    A.40秒

    B.50秒

    C.60秒

    D.70秒


    正确答案:A

     列方程 100x-y=400;这是追及方程。 25x+y=400;解得x=10,那么甲一圈需时40

  • 第3题:

    甲、乙两人从环形跑道的A点同时出发背向而行,6分钟后两人第一次相遇,相遇后两人的速度各增加10米每分钟,5分钟后两人第二次相遇,问环形跑道的长度为多少米()

    A、12
    B、15
    C、18
    D、21

    答案:A
    解析:
    本题考查相遇追及。设两人速度之和为v,环形跑道的长度为S,则S=6v=5×(v+10+10),解得S=600。故本题答案为A选项。????
    【知识点】相遇追及

  • 第4题:

    甲,乙两人同时同地绕400米的循环形跑道同向而行,甲每秒钟跑8米,乙每秒钟跑9米,多少秒后两人第三次相遇?( )

    A. 400
    B. 800
    C. 1200
    D. 1600

    答案:C
    解析:
    (9-8)×X=400×3,解得X=1200,故答案为C。

  • 第5题:

    甲、乙两人同时从同一地点出发沿同一环形跑道进行健身锻炼,甲跑步,乙走路。若甲追上乙所需时间是两人相向而行相遇所需时间的3倍,则甲、乙的速度之比是:

    A.3︰1
    B.5︰2
    C.2︰1
    D.3︰2

    答案:C
    解析:

  • 第6题:

    甲和乙在长400米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行.则第一次相遇的位置距离出发点有l50米的路程;如两人同时从同一点出发同向而行,跑得快的人第一次追上另一人时跑了(  )米。

    A.600
    B.800
    C.1000
    D.1200

    答案:C
    解析:
    由题意可假设甲的速度为150米/秒,则乙的速度为250米/秒,甲、乙速度差为100米/秒,乙追上甲需要400÷100=4(,秒),则所求为250×4=1000(米)。

  • 第7题:

    有一个400米环形跑道,甲、乙两人同时从同一地点同方向出发,甲以0.8米/秒的速度步行,乙以2.4米/秒的速度跑步,乙在第2次追上甲时用了( )秒

    A.200
    B.210
    C.230
    D.250
    E.500

    答案:E
    解析:
    乙第2次追上甲时,乙比甲多跑了2圈,即多跑了800米,故所用时间为800/(2.4-0.8)=500(秒)

  • 第8题:

    单选题
    甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,两人第三次相遇的地点与A点沿跑道上的最短距离是(  )
    A

    166米

    B

    176米

    C

    224米

    D

    234米


    正确答案: D
    解析:
    由题意可设,乙每秒钟走x米,则甲为(x+0.1)米。8×60×x+8×60×(x+0.1)=400×3,解得x=1.2,8分钟后,甲乙二人相遇时乙走的路程为480×1.2=576米,距离A点的最短距离为576-400=176米。

  • 第9题:

    跑马场一周之长为1080米。甲、乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分后,甲追上了乙。如果甲每分减少50米,乙每分增加30米,从同一地点同时背向而行,则经过3分后两人相遇。原来甲、乙两人每分各行多少米?( )

    A.200 180

    B.360 240

    C.240 200

    D.240 180


    正确答案:A

  • 第10题:

    环形跑道周长是500 米,甲、乙两人按顺时针沿环形跑道同时、同地起跑,甲每分钟跑60 米,乙每分钟跑50 米,甲、乙两人每跑200 米均要停下来休息1 分钟,那么甲首次追上乙需要多少分钟?

    A.60 B.36 C.77 D.103


    正确答案:C

  • 第11题:

    环形跑道的周长为400米,甲乙两人骑车同时从同一地点出发,匀速相向而行,16秒后甲乙相遇。相遇后,乙立即调头,6分40秒后甲第一次追上乙,问甲追上乙的地点距原来的起点多少米?

    A. 8
    B. 20
    C. 180
    D. 192

    答案:D
    解析:

  • 第12题:

    甲乙二人沿环形跑道从同一地点同时背向开始跑步,35秒后两人相遇。已知甲跑一圈需要60秒,乙跑一圈需要多少秒?

    A.77
    B.84
    C.91
    D.96

    答案:B
    解析:
    第一步,本题考查行程问题的环形相遇问题,用相遇公式和基本行程公式解题。

  • 第13题:

    如图,在长方形跑道上,甲、乙两人分别从A、C处同时出发,按顺时针方向沿跑道匀速奔跑。已知甲、乙两人的速度分别为5米/秒、4.5米/秒。则当甲第一次追上乙时,甲沿长方形跑道跑过的圈数是:


    A.4
    B.4.5
    C.5
    D.5.5

    答案:C
    解析:
    起跑时,甲、乙相距20+12=32米,甲每秒比乙多跑5-4.5=0.5米,故甲第一次追上乙需要32/0.5=64秒。跑道一圈为(20+12)x2=64米,故甲第一次追上乙时,甲跑了64x5/64=5圈。

  • 第14题:

    跑马场周长为1080米。甲、乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分钟后,甲追上了乙。如果甲每分钟减少50米,乙每分钟增加30米,从同一地点同时背向而行,则经过3 分钟后两人相遇。原来甲、乙两人每分钟各行多少米?( )
    A. 200 180 B. 360 240 C. 240 200 D. 240 180


    答案:A
    解析:
    ①现在甲、乙每分钟共行:1080/3=360(米)。
    ②设甲现在每分钟行x米,则原来每分钟行(x+50)米;乙现在每分钟行(360-x)米,原来每分钟行 (360-x-30)米。列方程得
    (x+ 50)X54-(360-x- 30) X 54 = 1080,解得x= 150。
    甲原来每分钟行150 + 50 = 200(米);乙原来每分钟行360-150 - 30 = 180(米)。故本题正确答案为A。

  • 第15题:

    甲、乙两人从4.0米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是( )。

    • A、166米
    • B、176米
    • C、224米
    • D、234米

    正确答案:B

  • 第16题:

    单选题
    一个长方形的跑道,宽50米,长100米,甲乙两人在跑道上跑步,若两人同时同地背向出发,经30秒后相遇,若两人同时同地同向出发,经过75秒钟后,甲追上乙。现在两人在同一地点顺时针跑步,乙提前1分钟出发,问再经过多少秒甲才能追上乙?()
    A

    35

    B

    40

    C

    45

    D

    50


    正确答案: A
    解析: 暂无解析