更多“设随机变量(X,Y)服从均匀分布U(D), 其中D={(x,y): 0<x<1, 0<y<1}, 则T=X+Y的概率密度函数为 p(t)=max(1-|1-t|,0).”相关问题
  • 第1题:

    设随机变量X,Y相互独立,X~U(0,2),Y~E(1),则.P(X+Y>1)等于().


    答案:A
    解析:

  • 第2题:

    设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数


    答案:
    解析:

  • 第3题:

    设随机变量X,y相互独立,且X~P(1),y~P(2),求P(max{X,Y}≠0)及P(min{X,Y}≠0).


    答案:
    解析:

  • 第4题:

    设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2,与y=0所围成的三角形区域.
      (Ⅰ)求X的概率密度fx(x);
      (Ⅱ)求条件概率密度.


    答案:
    解析:

  • 第5题:

    设随机变量(X,Y)在区域D={(z,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令
      U=,V=.
      (1)求(U,V)的联合分布;(2)求.


    答案:
    解析:

  • 第6题:

    设随机变量X的概率分布为P{X=1}=P{X=2}=,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).
      (Ⅰ)求Y的分布函数FY(y);
      (Ⅱ)求EY.


    答案:
    解析:

  • 第7题:

    设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为
      (Ⅰ)求P{Y≤EY};
      (Ⅱ)求Z=X+Y的概率密度.


    答案:
    解析:

  • 第8题:

    设随机变量X服从[0,2]上的均匀分布,Y=2X+1,则D(Y)=()。


    正确答案:4/3

  • 第9题:

    设X服从0—1分布,P=0.6,Y服从λ=2的泊松分布,且X,Y独立,则X+Y().

    • A、服从泊松分布
    • B、仍是离散型随机变量
    • C、为二维随机向量
    • D、取值为0的概率为0

    正确答案:B

  • 第10题:

    设随机变量X和Y相互独立,且X~N(0,1),Y~N(1,1),则()

    • A、P{X+Y≤0}=0.5
    • B、P{X+Y≤1}=0.5
    • C、P{X-Y≤0}=0.5
    • D、P{X-Y≤1}=0.5

    正确答案:B

  • 第11题:

    设X在[0,1]上服从均匀分布,Y=2X+1,则下列结论正确的是()

    • A、Y在[0,1]上服从均匀分布
    • B、Y在[1,3]上服从均匀分布
    • C、Y在[0,3]上服从均匀分布
    • D、P{0≤Y≤1}=1

    正确答案:B

  • 第12题:

    问答题
    设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

    正确答案:
    解析:

  • 第13题:

    设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.


    答案:
    解析:

  • 第14题:

    设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=_______.


    答案:
    解析:

  • 第15题:

    设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.


    答案:
    解析:

  • 第16题:

    设X,Y为两个随机变量,且P(X≥0,y≥0)=,P(X≥0)=P(Y≥0)=,则P(max{X,Y)≥0)_______.


    答案:
    解析:

  • 第17题:

    设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;
      (Ⅱ)Y的概率密度;
      (Ⅲ)概率P{X+Y>1}.


    答案:
    解析:
    【简解】本题是数四2004年考题,考查均匀分布,二维随机变量的概率密度、边缘密度和条件密度,当年的得分率仅为0.204.主要的困难在于对条件概率密度的理解.

  • 第18题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第19题:

    已知二维随机变量(X,Y)服从区域[0,1]×[0,1]上的均匀分布,则( )。

    A.P{X>0.5}=0.25
    B.P{Y>0.5}=0.25
    C.P{max(X,Y)>0.5}=0.25
    D.P{min(X,Y)>0.5}=0.25

    答案:D
    解析:
    二维均匀分布的概率等于面积比。所以P{X>0.5}=0.5,P{Y>0.5}=0.5,P{max(X,Y)>0.5}不能确定,P{min(X,Y)>0.5}=P{X>0.5,Y>0.5}=0.25。

  • 第20题:

    设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()


    正确答案:0.25

  • 第21题:

    设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=()

    • A、1/6
    • B、1/2
    • C、1
    • D、2

    正确答案:C

  • 第22题:

    设随机变量X,Y相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是()。

    • A、XY
    • B、(X,Y)
    • C、X—Y
    • D、X+Y

    正确答案:B

  • 第23题:

    单选题
    设两个相互独立的随机变量X和Y分别服从于N(0,1)和N(1,1),则(  )。
    A

    P{X+Y≤0}=1/2

    B

    P{X+Y≤1}=1/2

    C

    P{X-Y≤0}=1/2

    D

    P{X-Y≤1}=1/2


    正确答案: B
    解析:
    令Z=X+Y,则Z~N(1,2),则P{Z≤1}=1/2。

  • 第24题:

    填空题
    设X,Y是两个随机变量,且P{X≥0,Y≥0}=3/7,P{X≥0}=P{Y≥0}=4/7,则P{max(X,Y)≥0}=____。

    正确答案: 5/7
    解析:
    设Z=max(X,Y),则P{Z≥0}=P{X≥0∪Y≥0}=P{X≥0}+P{Y≥0}-P{X≥0∩Y≥0}=4/7+4/7-3/7=5/7。